![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpd2e | Structured version Visualization version GIF version |
Description: Deduce a group from its properties. In this version of isgrpd2 18841, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
isgrpd2e.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpd2e | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | isgrpd2e.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
3 | 2 | ralrimiva 3146 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
4 | isgrpd2.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
5 | isgrpd2.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
6 | 5 | oveqd 7425 | . . . . . 6 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
7 | isgrpd2.z | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
8 | 6, 7 | eqeq12d 2748 | . . . . 5 ⊢ (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 4, 8 | rexeqbidv 3343 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
10 | 4, 9 | raleqbidv 3342 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
11 | 3, 10 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
12 | eqid 2732 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2732 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2732 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
15 | 12, 13, 14 | isgrp 18824 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
16 | 1, 11, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Mndcmnd 18624 Grpcgrp 18818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-grp 18821 |
This theorem is referenced by: isgrpd2 18841 isgrpde 18842 |
Copyright terms: Public domain | W3C validator |