| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpd2e | Structured version Visualization version GIF version | ||
| Description: Deduce a group from its properties. In this version of isgrpd2 18937, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
| Ref | Expression |
|---|---|
| isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| isgrpd2e.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpd2e | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | isgrpd2e.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
| 3 | 2 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 4 | isgrpd2.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 5 | isgrpd2.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 6 | 5 | oveqd 7420 | . . . . . 6 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
| 7 | isgrpd2.z | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
| 8 | 6, 7 | eqeq12d 2751 | . . . . 5 ⊢ (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 4, 8 | rexeqbidv 3326 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 10 | 4, 9 | raleqbidv 3325 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 11 | 3, 10 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 12 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 15 | 12, 13, 14 | isgrp 18920 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 16 | 1, 11, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Mndcmnd 18710 Grpcgrp 18914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-grp 18917 |
| This theorem is referenced by: isgrpd2 18937 isgrpde 18938 rloccring 33211 |
| Copyright terms: Public domain | W3C validator |