![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpd2e | Structured version Visualization version GIF version |
Description: Deduce a group from its properties. In this version of isgrpd2 18886, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
isgrpd2e.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpd2e | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | isgrpd2e.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
3 | 2 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
4 | isgrpd2.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
5 | isgrpd2.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
6 | 5 | oveqd 7422 | . . . . . 6 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
7 | isgrpd2.z | . . . . . 6 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
8 | 6, 7 | eqeq12d 2742 | . . . . 5 ⊢ (𝜑 → ((𝑦 + 𝑥) = 0 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 4, 8 | rexeqbidv 3337 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
10 | 4, 9 | raleqbidv 3336 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ↔ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
11 | 3, 10 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
12 | eqid 2726 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2726 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2726 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
15 | 12, 13, 14 | isgrp 18869 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
16 | 1, 11, 15 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 0gc0g 17394 Mndcmnd 18667 Grpcgrp 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-ov 7408 df-grp 18866 |
This theorem is referenced by: isgrpd2 18886 isgrpde 18887 |
Copyright terms: Public domain | W3C validator |