| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppggrp | Structured version Visualization version GIF version | ||
| Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppggrp | ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | oppgbas 19269 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ Grp → (Base‘𝑅) = (Base‘𝑂)) |
| 5 | eqidd 2732 | . 2 ⊢ (𝑅 ∈ Grp → (+g‘𝑂) = (+g‘𝑂)) | |
| 6 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 1, 6 | oppgid 19274 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑂) |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) = (0g‘𝑂)) |
| 9 | grpmnd 18859 | . . 3 ⊢ (𝑅 ∈ Grp → 𝑅 ∈ Mnd) | |
| 10 | 1 | oppgmnd 19272 | . . 3 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Mnd) |
| 12 | eqid 2731 | . . 3 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 13 | 2, 12 | grpinvcl 18906 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 14 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 15 | eqid 2731 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 16 | 14, 1, 15 | oppgplus 19267 | . . 3 ⊢ (((invg‘𝑅)‘𝑥)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)((invg‘𝑅)‘𝑥)) |
| 17 | 2, 14, 6, 12 | grprinv 18909 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)((invg‘𝑅)‘𝑥)) = (0g‘𝑅)) |
| 18 | 16, 17 | eqtrid 2778 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg‘𝑅)‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) |
| 19 | 4, 5, 8, 11, 13, 18 | isgrpd2 18875 | 1 ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 +gcplusg 17167 0gc0g 17349 Mndcmnd 18648 Grpcgrp 18852 invgcminusg 18853 oppgcoppg 19263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-oppg 19264 |
| This theorem is referenced by: oppggrpb 19276 oppginv 19277 invoppggim 19278 oppgtgp 24019 |
| Copyright terms: Public domain | W3C validator |