MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppggrp Structured version   Visualization version   GIF version

Theorem oppggrp 19218
Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppggrp (𝑅 ∈ Grp → 𝑂 ∈ Grp)

Proof of Theorem oppggrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2732 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 19210 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Grp → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2733 . 2 (𝑅 ∈ Grp → (+g𝑂) = (+g𝑂))
6 eqid 2732 . . . 4 (0g𝑅) = (0g𝑅)
71, 6oppgid 19217 . . 3 (0g𝑅) = (0g𝑂)
87a1i 11 . 2 (𝑅 ∈ Grp → (0g𝑅) = (0g𝑂))
9 grpmnd 18822 . . 3 (𝑅 ∈ Grp → 𝑅 ∈ Mnd)
101oppgmnd 19215 . . 3 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
119, 10syl 17 . 2 (𝑅 ∈ Grp → 𝑂 ∈ Mnd)
12 eqid 2732 . . 3 (invg𝑅) = (invg𝑅)
132, 12grpinvcl 18868 . 2 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
14 eqid 2732 . . . 4 (+g𝑅) = (+g𝑅)
15 eqid 2732 . . . 4 (+g𝑂) = (+g𝑂)
1614, 1, 15oppgplus 19207 . . 3 (((invg𝑅)‘𝑥)(+g𝑂)𝑥) = (𝑥(+g𝑅)((invg𝑅)‘𝑥))
172, 14, 6, 12grprinv 18871 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)((invg𝑅)‘𝑥)) = (0g𝑅))
1816, 17eqtrid 2784 . 2 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑂)𝑥) = (0g𝑅))
194, 5, 8, 11, 13, 18isgrpd2 18838 1 (𝑅 ∈ Grp → 𝑂 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621  Grpcgrp 18815  invgcminusg 18816  oppgcoppg 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-oppg 19204
This theorem is referenced by:  oppggrpb  19219  oppginv  19220  invoppggim  19221  oppgtgp  23593
  Copyright terms: Public domain W3C validator