MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Visualization version   GIF version

Theorem isgrpde 18839
Description: Deduce a group from its properties. In this version of isgrpd 18840, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b (𝜑𝐵 = (Base‘𝐺))
isgrpd.p (𝜑+ = (+g𝐺))
isgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpd.z (𝜑0𝐵)
isgrpd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
isgrpde.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpde (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd.z . . 3 (𝜑0𝐵)
4 isgrpd.i . . 3 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5 isgrpd.c . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
6 isgrpd.a . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7 isgrpde.n . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
85, 3, 4, 6, 7grprida 18590 . . 3 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
91, 2, 3, 4, 8grpidd 18586 . 2 (𝜑0 = (0g𝐺))
101, 2, 5, 6, 3, 4, 8ismndd 18643 . 2 (𝜑𝐺 ∈ Mnd)
111, 2, 9, 10, 7isgrpd2e 18837 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  cfv 6540  (class class class)co 7404  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-riota 7360  df-ov 7407  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818
This theorem is referenced by:  isgrpd  18840  dfgrp2  18843  imasgrp2  18934  unitgrp  20186
  Copyright terms: Public domain W3C validator