| Step | Hyp | Ref
| Expression |
| 1 | | islmodd.l |
. 2
⊢ (𝜑 → 𝑊 ∈ Grp) |
| 2 | | islmodd.f |
. . 3
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| 3 | | islmodd.r |
. . 3
⊢ (𝜑 → 𝐹 ∈ Ring) |
| 4 | 2, 3 | eqeltrrd 2842 |
. 2
⊢ (𝜑 → (Scalar‘𝑊) ∈ Ring) |
| 5 | | islmodd.w |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉) |
| 6 | 5 | 3expb 1121 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
| 7 | 6 | ralrimivva 3202 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 (𝑥 · 𝑦) ∈ 𝑉) |
| 8 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑟 → (𝑥 · 𝑦) = (𝑟 · 𝑦)) |
| 9 | 8 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑟 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑟 · 𝑦) ∈ 𝑉)) |
| 10 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (𝑟 · 𝑦) = (𝑟 · 𝑤)) |
| 11 | 10 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑟 · 𝑦) ∈ 𝑉 ↔ (𝑟 · 𝑤) ∈ 𝑉)) |
| 12 | 9, 11 | rspc2v 3633 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 (𝑥 · 𝑦) ∈ 𝑉 → (𝑟 · 𝑤) ∈ 𝑉)) |
| 13 | 12 | ad2ant2l 746 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 (𝑥 · 𝑦) ∈ 𝑉 → (𝑟 · 𝑤) ∈ 𝑉)) |
| 14 | 7, 13 | mpan9 506 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → (𝑟 · 𝑤) ∈ 𝑉) |
| 15 | | islmodd.c |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 16 | 15 | ralrimivvva 3205 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 17 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑟 → (𝑥 · (𝑦 + 𝑧)) = (𝑟 · (𝑦 + 𝑧))) |
| 18 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑟 → (𝑥 · 𝑧) = (𝑟 · 𝑧)) |
| 19 | 8, 18 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑟 → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑟 · 𝑦) + (𝑟 · 𝑧))) |
| 20 | 17, 19 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑟 → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ↔ (𝑟 · (𝑦 + 𝑧)) = ((𝑟 · 𝑦) + (𝑟 · 𝑧)))) |
| 21 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → (𝑦 + 𝑧) = (𝑤 + 𝑧)) |
| 22 | 21 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝑟 · (𝑦 + 𝑧)) = (𝑟 · (𝑤 + 𝑧))) |
| 23 | 10 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → ((𝑟 · 𝑦) + (𝑟 · 𝑧)) = ((𝑟 · 𝑤) + (𝑟 · 𝑧))) |
| 24 | 22, 23 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝑟 · (𝑦 + 𝑧)) = ((𝑟 · 𝑦) + (𝑟 · 𝑧)) ↔ (𝑟 · (𝑤 + 𝑧)) = ((𝑟 · 𝑤) + (𝑟 · 𝑧)))) |
| 25 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑢 → (𝑤 + 𝑧) = (𝑤 + 𝑢)) |
| 26 | 25 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑢 → (𝑟 · (𝑤 + 𝑧)) = (𝑟 · (𝑤 + 𝑢))) |
| 27 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑢 → (𝑟 · 𝑧) = (𝑟 · 𝑢)) |
| 28 | 27 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑢 → ((𝑟 · 𝑤) + (𝑟 · 𝑧)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢))) |
| 29 | 26, 28 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑢 → ((𝑟 · (𝑤 + 𝑧)) = ((𝑟 · 𝑤) + (𝑟 · 𝑧)) ↔ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)))) |
| 30 | 20, 24, 29 | rspc3v 3638 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ∧ 𝑢 ∈ 𝑉) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) → (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)))) |
| 31 | 30 | 3com23 1127 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ 𝐵 ∧ 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) → (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)))) |
| 32 | 31 | 3expb 1121 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝐵 ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) → (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)))) |
| 33 | 32 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑉 ∀𝑧 ∈ 𝑉 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) → (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)))) |
| 34 | 16, 33 | mpan9 506 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢))) |
| 35 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → 𝑥 ∈ 𝐵) |
| 36 | | islmodd.d |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 37 | 36 | 3exp2 1355 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝑉 → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
| 38 | 37 | imp43 427 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 39 | 38 | ralrimivva 3202 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 40 | 35, 39 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 41 | | simprlr 780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → 𝑟 ∈ 𝐵) |
| 42 | | simprrr 782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → 𝑤 ∈ 𝑉) |
| 43 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑟 → (𝑥 ⨣ 𝑦) = (𝑥 ⨣ 𝑟)) |
| 44 | 43 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 ⨣ 𝑟) · 𝑧)) |
| 45 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑟 → (𝑦 · 𝑧) = (𝑟 · 𝑧)) |
| 46 | 45 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥 · 𝑧) + (𝑟 · 𝑧))) |
| 47 | 44, 46 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)) ↔ ((𝑥 ⨣ 𝑟) · 𝑧) = ((𝑥 · 𝑧) + (𝑟 · 𝑧)))) |
| 48 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑥 ⨣ 𝑟) · 𝑧) = ((𝑥 ⨣ 𝑟) · 𝑤)) |
| 49 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑥 · 𝑧) = (𝑥 · 𝑤)) |
| 50 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑟 · 𝑧) = (𝑟 · 𝑤)) |
| 51 | 49, 50 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑥 · 𝑧) + (𝑟 · 𝑧)) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) |
| 52 | 48, 51 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (((𝑥 ⨣ 𝑟) · 𝑧) = ((𝑥 · 𝑧) + (𝑟 · 𝑧)) ↔ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤)))) |
| 53 | 47, 52 | rspc2v 3633 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)) → ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤)))) |
| 54 | 41, 42, 53 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)) → ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤)))) |
| 55 | 40, 54 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) |
| 56 | 14, 34, 55 | 3jca 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤)))) |
| 57 | | islmodd.e |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 58 | 57 | 3exp2 1355 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝑉 → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))))) |
| 59 | 58 | imp43 427 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 60 | 59 | ralrimivva 3202 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 61 | 35, 60 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 62 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → (𝑥 × 𝑦) = (𝑥 × 𝑟)) |
| 63 | 62 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → ((𝑥 × 𝑦) · 𝑧) = ((𝑥 × 𝑟) · 𝑧)) |
| 64 | 45 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑥 · (𝑦 · 𝑧)) = (𝑥 · (𝑟 · 𝑧))) |
| 65 | 63, 64 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑟 → (((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥 × 𝑟) · 𝑧) = (𝑥 · (𝑟 · 𝑧)))) |
| 66 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ((𝑥 × 𝑟) · 𝑧) = ((𝑥 × 𝑟) · 𝑤)) |
| 67 | 50 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝑥 · (𝑟 · 𝑧)) = (𝑥 · (𝑟 · 𝑤))) |
| 68 | 66, 67 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (((𝑥 × 𝑟) · 𝑧) = (𝑥 · (𝑟 · 𝑧)) ↔ ((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)))) |
| 69 | 65, 68 | rspc2v 3633 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) → ((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)))) |
| 70 | 41, 42, 69 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑉 ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) → ((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)))) |
| 71 | 61, 70 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤))) |
| 72 | | islmodd.g |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) |
| 73 | 72 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ( 1 · 𝑥) = 𝑥) |
| 74 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ( 1 · 𝑥) = ( 1 · 𝑤)) |
| 75 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
| 76 | 74, 75 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑤) = 𝑤)) |
| 77 | 76 | rspcv 3618 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑉 → (∀𝑥 ∈ 𝑉 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑤) = 𝑤)) |
| 78 | 77 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (∀𝑥 ∈ 𝑉 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑤) = 𝑤)) |
| 79 | 73, 78 | mpan9 506 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → ( 1 · 𝑤) = 𝑤) |
| 80 | 56, 71, 79 | jca32 515 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉))) → (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) |
| 81 | 80 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ (𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) |
| 82 | 81 | ralrimivva 3202 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ∀𝑢 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) |
| 83 | 82 | ralrimivva 3202 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑟 ∈ 𝐵 ∀𝑢 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))) |
| 84 | | islmodd.b |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 85 | 2 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝑊))) |
| 86 | 84, 85 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘𝑊))) |
| 87 | | islmodd.v |
. . . . . 6
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
| 88 | | islmodd.s |
. . . . . . . . . . 11
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
| 89 | 88 | oveqd 7448 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑟 · 𝑤) = (𝑟( ·𝑠
‘𝑊)𝑤)) |
| 90 | 89, 87 | eleq12d 2835 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑟 · 𝑤) ∈ 𝑉 ↔ (𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊))) |
| 91 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑟 = 𝑟) |
| 92 | | islmodd.a |
. . . . . . . . . . . 12
⊢ (𝜑 → + =
(+g‘𝑊)) |
| 93 | 92 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 + 𝑢) = (𝑤(+g‘𝑊)𝑢)) |
| 94 | 88, 91, 93 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑟 · (𝑤 + 𝑢)) = (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢))) |
| 95 | 88 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑟 · 𝑢) = (𝑟( ·𝑠
‘𝑊)𝑢)) |
| 96 | 92, 89, 95 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑟 · 𝑤) + (𝑟 · 𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢))) |
| 97 | 94, 96 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ↔ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)))) |
| 98 | | islmodd.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⨣ =
(+g‘𝐹)) |
| 99 | 2 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (+g‘𝐹) =
(+g‘(Scalar‘𝑊))) |
| 100 | 98, 99 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (𝜑 → ⨣ =
(+g‘(Scalar‘𝑊))) |
| 101 | 100 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ⨣ 𝑟) = (𝑥(+g‘(Scalar‘𝑊))𝑟)) |
| 102 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑤 = 𝑤) |
| 103 | 88, 101, 102 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤)) |
| 104 | 88 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 · 𝑤) = (𝑥( ·𝑠
‘𝑊)𝑤)) |
| 105 | 92, 104, 89 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 · 𝑤) + (𝑟 · 𝑤)) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) |
| 106 | 103, 105 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤)) ↔ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤)))) |
| 107 | 90, 97, 106 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝜑 → (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ↔ ((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))))) |
| 108 | | islmodd.t |
. . . . . . . . . . . . 13
⊢ (𝜑 → × =
(.r‘𝐹)) |
| 109 | 2 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (.r‘𝐹) =
(.r‘(Scalar‘𝑊))) |
| 110 | 108, 109 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (𝜑 → × =
(.r‘(Scalar‘𝑊))) |
| 111 | 110 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 × 𝑟) = (𝑥(.r‘(Scalar‘𝑊))𝑟)) |
| 112 | 88, 111, 102 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 × 𝑟) · 𝑤) = ((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤)) |
| 113 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑥 = 𝑥) |
| 114 | 88, 113, 89 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 · (𝑟 · 𝑤)) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤))) |
| 115 | 112, 114 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ↔ ((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)))) |
| 116 | | islmodd.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 =
(1r‘𝐹)) |
| 117 | 2 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1r‘𝐹) =
(1r‘(Scalar‘𝑊))) |
| 118 | 116, 117 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 =
(1r‘(Scalar‘𝑊))) |
| 119 | 88, 118, 102 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → ( 1 · 𝑤) = ((1r‘(Scalar‘𝑊))(
·𝑠 ‘𝑊)𝑤)) |
| 120 | 119 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝜑 → (( 1 · 𝑤) = 𝑤 ↔
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)) |
| 121 | 115, 120 | anbi12d 632 |
. . . . . . . 8
⊢ (𝜑 → ((((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤) ↔ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤))) |
| 122 | 107, 121 | anbi12d 632 |
. . . . . . 7
⊢ (𝜑 → ((((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 123 | 87, 122 | raleqbidv 3346 |
. . . . . 6
⊢ (𝜑 → (∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 124 | 87, 123 | raleqbidv 3346 |
. . . . 5
⊢ (𝜑 → (∀𝑢 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑢 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 125 | 86, 124 | raleqbidv 3346 |
. . . 4
⊢ (𝜑 → (∀𝑟 ∈ 𝐵 ∀𝑢 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 126 | 86, 125 | raleqbidv 3346 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑟 ∈ 𝐵 ∀𝑢 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑢)) = ((𝑟 · 𝑤) + (𝑟 · 𝑢)) ∧ ((𝑥 ⨣ 𝑟) · 𝑤) = ((𝑥 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑥 × 𝑟) · 𝑤) = (𝑥 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 127 | 83, 126 | mpbid 232 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤))) |
| 128 | | eqid 2737 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 129 | | eqid 2737 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 130 | | eqid 2737 |
. . 3
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 131 | | eqid 2737 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 132 | | eqid 2737 |
. . 3
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 133 | | eqid 2737 |
. . 3
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) |
| 134 | | eqid 2737 |
. . 3
⊢
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊)) |
| 135 | | eqid 2737 |
. . 3
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
| 136 | 128, 129,
130, 131, 132, 133, 134, 135 | islmod 20862 |
. 2
⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧
(Scalar‘𝑊) ∈
Ring ∧ ∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠
‘𝑊)(𝑤(+g‘𝑊)𝑢)) = ((𝑟( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑢)) ∧ ((𝑥(+g‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = ((𝑥( ·𝑠
‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑤))) ∧ (((𝑥(.r‘(Scalar‘𝑊))𝑟)( ·𝑠
‘𝑊)𝑤) = (𝑥( ·𝑠
‘𝑊)(𝑟(
·𝑠 ‘𝑊)𝑤)) ∧
((1r‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑤) = 𝑤)))) |
| 137 | 1, 4, 127, 136 | syl3anbrc 1344 |
1
⊢ (𝜑 → 𝑊 ∈ LMod) |