MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpss Structured version   Visualization version   GIF version

Theorem grpss 18942
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20203, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpss.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
grpss.r 𝑅 ∈ V
grpss.s 𝐺𝑅
grpss.f Fun 𝑅
Assertion
Ref Expression
grpss (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp)

Proof of Theorem grpss
StepHypRef Expression
1 grpss.r . . . 4 𝑅 ∈ V
2 grpss.f . . . 4 Fun 𝑅
3 grpss.s . . . 4 𝐺𝑅
4 baseid 17236 . . . 4 Base = Slot (Base‘ndx)
5 opex 5444 . . . . . 6 ⟨(Base‘ndx), 𝐵⟩ ∈ V
65prid1 4743 . . . . 5 ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
7 grpss.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
86, 7eleqtrri 2834 . . . 4 ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺
91, 2, 3, 4, 8strss 17230 . . 3 (Base‘𝑅) = (Base‘𝐺)
10 plusgid 17303 . . . 4 +g = Slot (+g‘ndx)
11 opex 5444 . . . . . 6 ⟨(+g‘ndx), + ⟩ ∈ V
1211prid2 4744 . . . . 5 ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
1312, 7eleqtrri 2834 . . . 4 ⟨(+g‘ndx), + ⟩ ∈ 𝐺
141, 2, 3, 10, 13strss 17230 . . 3 (+g𝑅) = (+g𝐺)
159, 14grpprop 18940 . 2 (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp)
1615bicomi 224 1 (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  {cpr 4608  cop 4612  Fun wfun 6530  cfv 6536  ndxcnx 17217  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-2 12308  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator