Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version |
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 19703, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
grpss.r | ⊢ 𝑅 ∈ V |
grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
grpss.f | ⊢ Fun 𝑅 |
Ref | Expression |
---|---|
grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
4 | baseid 16843 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
5 | opex 5373 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
6 | 5 | prid1 4695 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
8 | 6, 7 | eleqtrri 2838 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
9 | 1, 2, 3, 4, 8 | strss 16836 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | plusgid 16915 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
11 | opex 5373 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
12 | 11 | prid2 4696 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
13 | 12, 7 | eleqtrri 2838 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
14 | 1, 2, 3, 10, 13 | strss 16836 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
15 | 9, 14 | grpprop 18510 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
16 | 15 | bicomi 223 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 〈cop 4564 Fun wfun 6412 ‘cfv 6418 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |