Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version |
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 19884, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
grpss.r | ⊢ 𝑅 ∈ V |
grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
grpss.f | ⊢ Fun 𝑅 |
Ref | Expression |
---|---|
grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
4 | baseid 17013 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
5 | opex 5410 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
6 | 5 | prid1 4711 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
8 | 6, 7 | eleqtrri 2836 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
9 | 1, 2, 3, 4, 8 | strss 17006 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | plusgid 17087 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
11 | opex 5410 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
12 | 11 | prid2 4712 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
13 | 12, 7 | eleqtrri 2836 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
14 | 1, 2, 3, 10, 13 | strss 17006 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
15 | 9, 14 | grpprop 18692 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
16 | 15 | bicomi 223 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 {cpr 4576 〈cop 4580 Fun wfun 6474 ‘cfv 6480 ndxcnx 16992 Basecbs 17010 +gcplusg 17060 Grpcgrp 18674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-1cn 11031 ax-addcl 11033 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-nn 12076 df-2 12138 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |