| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version | ||
| Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20208, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| grpss.r | ⊢ 𝑅 ∈ V |
| grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
| grpss.f | ⊢ Fun 𝑅 |
| Ref | Expression |
|---|---|
| grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
| 2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
| 3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
| 4 | baseid 17233 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 5 | opex 5451 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
| 6 | 5 | prid1 4744 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
| 8 | 6, 7 | eleqtrri 2832 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
| 9 | 1, 2, 3, 4, 8 | strss 17226 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 10 | plusgid 17304 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
| 11 | opex 5451 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
| 12 | 11 | prid2 4745 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 13 | 12, 7 | eleqtrri 2832 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
| 14 | 1, 2, 3, 10, 13 | strss 17226 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
| 15 | 9, 14 | grpprop 18944 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
| 16 | 15 | bicomi 224 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 {cpr 4610 〈cop 4614 Fun wfun 6536 ‘cfv 6542 ndxcnx 17213 Basecbs 17230 +gcplusg 17277 Grpcgrp 18925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-nn 12250 df-2 12312 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |