![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version |
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20054, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpss.g | ⊢ 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} |
grpss.r | ⊢ 𝑅 ∈ V |
grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
grpss.f | ⊢ Fun 𝑅 |
Ref | Expression |
---|---|
grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
4 | baseid 17143 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
5 | opex 5463 | . . . . . 6 ⊢ ⟨(Base‘ndx), 𝐵⟩ ∈ V | |
6 | 5 | prid1 4765 | . . . . 5 ⊢ ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} |
7 | grpss.g | . . . . 5 ⊢ 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} | |
8 | 6, 7 | eleqtrri 2832 | . . . 4 ⊢ ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺 |
9 | 1, 2, 3, 4, 8 | strss 17136 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | plusgid 17220 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
11 | opex 5463 | . . . . . 6 ⊢ ⟨(+g‘ndx), + ⟩ ∈ V | |
12 | 11 | prid2 4766 | . . . . 5 ⊢ ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} |
13 | 12, 7 | eleqtrri 2832 | . . . 4 ⊢ ⟨(+g‘ndx), + ⟩ ∈ 𝐺 |
14 | 1, 2, 3, 10, 13 | strss 17136 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
15 | 9, 14 | grpprop 18834 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
16 | 15 | bicomi 223 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 {cpr 4629 ⟨cop 4633 Fun wfun 6534 ‘cfv 6540 ndxcnx 17122 Basecbs 17140 +gcplusg 17193 Grpcgrp 18815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-2 12271 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |