Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version |
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 19788, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
grpss.r | ⊢ 𝑅 ∈ V |
grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
grpss.f | ⊢ Fun 𝑅 |
Ref | Expression |
---|---|
grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
4 | baseid 16915 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
5 | opex 5379 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
6 | 5 | prid1 4698 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
8 | 6, 7 | eleqtrri 2838 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
9 | 1, 2, 3, 4, 8 | strss 16908 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | plusgid 16989 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
11 | opex 5379 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
12 | 11 | prid2 4699 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
13 | 12, 7 | eleqtrri 2838 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
14 | 1, 2, 3, 10, 13 | strss 16908 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
15 | 9, 14 | grpprop 18595 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
16 | 15 | bicomi 223 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {cpr 4563 〈cop 4567 Fun wfun 6427 ‘cfv 6433 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |