| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version | ||
| Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20160, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| grpss.r | ⊢ 𝑅 ∈ V |
| grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
| grpss.f | ⊢ Fun 𝑅 |
| Ref | Expression |
|---|---|
| grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
| 2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
| 3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
| 4 | baseid 17127 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 5 | opex 5409 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
| 6 | 5 | prid1 4716 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
| 8 | 6, 7 | eleqtrri 2832 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
| 9 | 1, 2, 3, 4, 8 | strss 17121 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 10 | plusgid 17192 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
| 11 | opex 5409 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
| 12 | 11 | prid2 4717 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 13 | 12, 7 | eleqtrri 2832 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
| 14 | 1, 2, 3, 10, 13 | strss 17121 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
| 15 | 9, 14 | grpprop 18869 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
| 16 | 15 | bicomi 224 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {cpr 4579 〈cop 4583 Fun wfun 6482 ‘cfv 6488 ndxcnx 17108 Basecbs 17124 +gcplusg 17165 Grpcgrp 18850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-1cn 11073 ax-addcl 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-nn 12135 df-2 12197 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |