| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version | ||
| Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 20157, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| grpss.r | ⊢ 𝑅 ∈ V |
| grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
| grpss.f | ⊢ Fun 𝑅 |
| Ref | Expression |
|---|---|
| grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
| 2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
| 3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
| 4 | baseid 17123 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 5 | opex 5404 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
| 6 | 5 | prid1 4715 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
| 8 | 6, 7 | eleqtrri 2830 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
| 9 | 1, 2, 3, 4, 8 | strss 17117 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 10 | plusgid 17188 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
| 11 | opex 5404 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
| 12 | 11 | prid2 4716 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| 13 | 12, 7 | eleqtrri 2830 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
| 14 | 1, 2, 3, 10, 13 | strss 17117 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
| 15 | 9, 14 | grpprop 18865 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
| 16 | 15 | bicomi 224 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {cpr 4578 〈cop 4582 Fun wfun 6475 ‘cfv 6481 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-2 12188 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |