MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpss Structured version   Visualization version   GIF version

Theorem grpss 18120
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 19301, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpss.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
grpss.r 𝑅 ∈ V
grpss.s 𝐺𝑅
grpss.f Fun 𝑅
Assertion
Ref Expression
grpss (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp)

Proof of Theorem grpss
StepHypRef Expression
1 grpss.r . . . 4 𝑅 ∈ V
2 grpss.f . . . 4 Fun 𝑅
3 grpss.s . . . 4 𝐺𝑅
4 baseid 16542 . . . 4 Base = Slot (Base‘ndx)
5 opex 5355 . . . . . 6 ⟨(Base‘ndx), 𝐵⟩ ∈ V
65prid1 4697 . . . . 5 ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
7 grpss.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
86, 7eleqtrri 2912 . . . 4 ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺
91, 2, 3, 4, 8strss 16533 . . 3 (Base‘𝑅) = (Base‘𝐺)
10 plusgid 16595 . . . 4 +g = Slot (+g‘ndx)
11 opex 5355 . . . . . 6 ⟨(+g‘ndx), + ⟩ ∈ V
1211prid2 4698 . . . . 5 ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
1312, 7eleqtrri 2912 . . . 4 ⟨(+g‘ndx), + ⟩ ∈ 𝐺
141, 2, 3, 10, 13strss 16533 . . 3 (+g𝑅) = (+g𝐺)
159, 14grpprop 18118 . 2 (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp)
1615bicomi 226 1 (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  {cpr 4568  cop 4572  Fun wfun 6348  cfv 6354  ndxcnx 16479  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-1cn 10594  ax-addcl 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator