MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 23360
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21ishaus 23351 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 497 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  c0 4352   cuni 4931  Topctop 22920  Hauscha 23337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-ss 3993  df-uni 4932  df-haus 23344
This theorem is referenced by:  haust1  23381  resthaus  23397  sshaus  23404  lmmo  23409  hauscmplem  23435  hauscmp  23436  hauslly  23521  hausllycmp  23523  kgenhaus  23573  pthaus  23667  txhaus  23676  xkohaus  23682  haushmph  23821  cmphaushmeo  23829  hausflim  24010  hauspwpwf1  24016  hauspwpwdom  24017  hausflf  24026  cnextfun  24093  cnextfvval  24094  cnextf  24095  cnextcn  24096  cnextfres1  24097  cnextfres  24098  qtophaus  33782  ismntop  33972  poimirlem30  37610  hausgraph  43166
  Copyright terms: Public domain W3C validator