| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version | ||
| Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ishaus 23207 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3902 ∅c0 4284 ∪ cuni 4858 Topctop 22778 Hauscha 23193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-ss 3920 df-uni 4859 df-haus 23200 |
| This theorem is referenced by: haust1 23237 resthaus 23253 sshaus 23260 lmmo 23265 hauscmplem 23291 hauscmp 23292 hauslly 23377 hausllycmp 23379 kgenhaus 23429 pthaus 23523 txhaus 23532 xkohaus 23538 haushmph 23677 cmphaushmeo 23685 hausflim 23866 hauspwpwf1 23872 hauspwpwdom 23873 hausflf 23882 cnextfun 23949 cnextfvval 23950 cnextf 23951 cnextcn 23952 cnextfres1 23953 cnextfres 23954 qtophaus 33819 ismntop 34009 poimirlem30 37650 hausgraph 43198 |
| Copyright terms: Public domain | W3C validator |