Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version |
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ishaus 22473 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
3 | 2 | simplbi 498 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ∅c0 4256 ∪ cuni 4839 Topctop 22042 Hauscha 22459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-haus 22466 |
This theorem is referenced by: haust1 22503 resthaus 22519 sshaus 22526 lmmo 22531 hauscmplem 22557 hauscmp 22558 hauslly 22643 hausllycmp 22645 kgenhaus 22695 pthaus 22789 txhaus 22798 xkohaus 22804 haushmph 22943 cmphaushmeo 22951 hausflim 23132 hauspwpwf1 23138 hauspwpwdom 23139 hausflf 23148 cnextfun 23215 cnextfvval 23216 cnextf 23217 cnextcn 23218 cnextfres1 23219 cnextfres 23220 qtophaus 31786 ismntop 31976 poimirlem30 35807 hausgraph 41037 |
Copyright terms: Public domain | W3C validator |