MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 23216
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 𝐽 = 𝐽
21ishaus 23207 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 497 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3902  c0 4284   cuni 4858  Topctop 22778  Hauscha 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-ss 3920  df-uni 4859  df-haus 23200
This theorem is referenced by:  haust1  23237  resthaus  23253  sshaus  23260  lmmo  23265  hauscmplem  23291  hauscmp  23292  hauslly  23377  hausllycmp  23379  kgenhaus  23429  pthaus  23523  txhaus  23532  xkohaus  23538  haushmph  23677  cmphaushmeo  23685  hausflim  23866  hauspwpwf1  23872  hauspwpwdom  23873  hausflf  23882  cnextfun  23949  cnextfvval  23950  cnextf  23951  cnextcn  23952  cnextfres1  23953  cnextfres  23954  qtophaus  33819  ismntop  34009  poimirlem30  37650  hausgraph  43198
  Copyright terms: Public domain W3C validator