| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version | ||
| Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ishaus 23265 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∩ cin 3930 ∅c0 4313 ∪ cuni 4888 Topctop 22836 Hauscha 23251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-ss 3948 df-uni 4889 df-haus 23258 |
| This theorem is referenced by: haust1 23295 resthaus 23311 sshaus 23318 lmmo 23323 hauscmplem 23349 hauscmp 23350 hauslly 23435 hausllycmp 23437 kgenhaus 23487 pthaus 23581 txhaus 23590 xkohaus 23596 haushmph 23735 cmphaushmeo 23743 hausflim 23924 hauspwpwf1 23930 hauspwpwdom 23931 hausflf 23940 cnextfun 24007 cnextfvval 24008 cnextf 24009 cnextcn 24010 cnextfres1 24011 cnextfres 24012 qtophaus 33872 ismntop 34062 poimirlem30 37679 hausgraph 43204 |
| Copyright terms: Public domain | W3C validator |