![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version |
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ishaus 23351 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ∅c0 4352 ∪ cuni 4931 Topctop 22920 Hauscha 23337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-haus 23344 |
This theorem is referenced by: haust1 23381 resthaus 23397 sshaus 23404 lmmo 23409 hauscmplem 23435 hauscmp 23436 hauslly 23521 hausllycmp 23523 kgenhaus 23573 pthaus 23667 txhaus 23676 xkohaus 23682 haushmph 23821 cmphaushmeo 23829 hausflim 24010 hauspwpwf1 24016 hauspwpwdom 24017 hausflf 24026 cnextfun 24093 cnextfvval 24094 cnextf 24095 cnextcn 24096 cnextfres1 24097 cnextfres 24098 qtophaus 33782 ismntop 33972 poimirlem30 37610 hausgraph 43166 |
Copyright terms: Public domain | W3C validator |