MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 22390
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐽 = 𝐽
21ishaus 22381 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 497 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  c0 4253   cuni 4836  Topctop 21950  Hauscha 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-haus 22374
This theorem is referenced by:  haust1  22411  resthaus  22427  sshaus  22434  lmmo  22439  hauscmplem  22465  hauscmp  22466  hauslly  22551  hausllycmp  22553  kgenhaus  22603  pthaus  22697  txhaus  22706  xkohaus  22712  haushmph  22851  cmphaushmeo  22859  hausflim  23040  hauspwpwf1  23046  hauspwpwdom  23047  hausflf  23056  cnextfun  23123  cnextfvval  23124  cnextf  23125  cnextcn  23126  cnextfres1  23127  cnextfres  23128  qtophaus  31688  ismntop  31876  poimirlem30  35734  hausgraph  40953
  Copyright terms: Public domain W3C validator