![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version |
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ishaus 23346 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ∅c0 4339 ∪ cuni 4912 Topctop 22915 Hauscha 23332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-ss 3980 df-uni 4913 df-haus 23339 |
This theorem is referenced by: haust1 23376 resthaus 23392 sshaus 23399 lmmo 23404 hauscmplem 23430 hauscmp 23431 hauslly 23516 hausllycmp 23518 kgenhaus 23568 pthaus 23662 txhaus 23671 xkohaus 23677 haushmph 23816 cmphaushmeo 23824 hausflim 24005 hauspwpwf1 24011 hauspwpwdom 24012 hausflf 24021 cnextfun 24088 cnextfvval 24089 cnextf 24090 cnextcn 24091 cnextfres1 24092 cnextfres 24093 qtophaus 33797 ismntop 33989 poimirlem30 37637 hausgraph 43194 |
Copyright terms: Public domain | W3C validator |