| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version | ||
| Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ishaus 23242 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ∅c0 4292 ∪ cuni 4867 Topctop 22813 Hauscha 23228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-ss 3928 df-uni 4868 df-haus 23235 |
| This theorem is referenced by: haust1 23272 resthaus 23288 sshaus 23295 lmmo 23300 hauscmplem 23326 hauscmp 23327 hauslly 23412 hausllycmp 23414 kgenhaus 23464 pthaus 23558 txhaus 23567 xkohaus 23573 haushmph 23712 cmphaushmeo 23720 hausflim 23901 hauspwpwf1 23907 hauspwpwdom 23908 hausflf 23917 cnextfun 23984 cnextfvval 23985 cnextf 23986 cnextcn 23987 cnextfres1 23988 cnextfres 23989 qtophaus 33819 ismntop 34009 poimirlem30 37637 hausgraph 43187 |
| Copyright terms: Public domain | W3C validator |