Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version |
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ishaus 22545 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
3 | 2 | simplbi 498 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∩ cin 3896 ∅c0 4267 ∪ cuni 4850 Topctop 22114 Hauscha 22531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-in 3904 df-ss 3914 df-uni 4851 df-haus 22538 |
This theorem is referenced by: haust1 22575 resthaus 22591 sshaus 22598 lmmo 22603 hauscmplem 22629 hauscmp 22630 hauslly 22715 hausllycmp 22717 kgenhaus 22767 pthaus 22861 txhaus 22870 xkohaus 22876 haushmph 23015 cmphaushmeo 23023 hausflim 23204 hauspwpwf1 23210 hauspwpwdom 23211 hausflf 23220 cnextfun 23287 cnextfvval 23288 cnextf 23289 cnextcn 23290 cnextfres1 23291 cnextfres 23292 qtophaus 31892 ismntop 32082 poimirlem30 35863 hausgraph 41241 |
Copyright terms: Public domain | W3C validator |