MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 22482
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐽 = 𝐽
21ishaus 22473 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 498 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  c0 4256   cuni 4839  Topctop 22042  Hauscha 22459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-haus 22466
This theorem is referenced by:  haust1  22503  resthaus  22519  sshaus  22526  lmmo  22531  hauscmplem  22557  hauscmp  22558  hauslly  22643  hausllycmp  22645  kgenhaus  22695  pthaus  22789  txhaus  22798  xkohaus  22804  haushmph  22943  cmphaushmeo  22951  hausflim  23132  hauspwpwf1  23138  hauspwpwdom  23139  hausflf  23148  cnextfun  23215  cnextfvval  23216  cnextf  23217  cnextcn  23218  cnextfres1  23219  cnextfres  23220  qtophaus  31786  ismntop  31976  poimirlem30  35807  hausgraph  41037
  Copyright terms: Public domain W3C validator