| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version | ||
| Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ishaus 23209 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ∅c0 4296 ∪ cuni 4871 Topctop 22780 Hauscha 23195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-uni 4872 df-haus 23202 |
| This theorem is referenced by: haust1 23239 resthaus 23255 sshaus 23262 lmmo 23267 hauscmplem 23293 hauscmp 23294 hauslly 23379 hausllycmp 23381 kgenhaus 23431 pthaus 23525 txhaus 23534 xkohaus 23540 haushmph 23679 cmphaushmeo 23687 hausflim 23868 hauspwpwf1 23874 hauspwpwdom 23875 hausflf 23884 cnextfun 23951 cnextfvval 23952 cnextf 23953 cnextcn 23954 cnextfres1 23955 cnextfres 23956 qtophaus 33826 ismntop 34016 poimirlem30 37644 hausgraph 43194 |
| Copyright terms: Public domain | W3C validator |