| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version | ||
| Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ishaus 23295 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∩ cin 3932 ∅c0 4315 ∪ cuni 4889 Topctop 22866 Hauscha 23281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-ss 3950 df-uni 4890 df-haus 23288 |
| This theorem is referenced by: haust1 23325 resthaus 23341 sshaus 23348 lmmo 23353 hauscmplem 23379 hauscmp 23380 hauslly 23465 hausllycmp 23467 kgenhaus 23517 pthaus 23611 txhaus 23620 xkohaus 23626 haushmph 23765 cmphaushmeo 23773 hausflim 23954 hauspwpwf1 23960 hauspwpwdom 23961 hausflf 23970 cnextfun 24037 cnextfvval 24038 cnextf 24039 cnextcn 24040 cnextfres1 24041 cnextfres 24042 qtophaus 33776 ismntop 33968 poimirlem30 37598 hausgraph 43162 |
| Copyright terms: Public domain | W3C validator |