MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 23246
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 𝐽 = 𝐽
21ishaus 23237 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 497 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3896  c0 4280   cuni 4856  Topctop 22808  Hauscha 23223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-ss 3914  df-uni 4857  df-haus 23230
This theorem is referenced by:  haust1  23267  resthaus  23283  sshaus  23290  lmmo  23295  hauscmplem  23321  hauscmp  23322  hauslly  23407  hausllycmp  23409  kgenhaus  23459  pthaus  23553  txhaus  23562  xkohaus  23568  haushmph  23707  cmphaushmeo  23715  hausflim  23896  hauspwpwf1  23902  hauspwpwdom  23903  hausflf  23912  cnextfun  23979  cnextfvval  23980  cnextf  23981  cnextcn  23982  cnextfres1  23983  cnextfres  23984  qtophaus  33849  ismntop  34039  poimirlem30  37689  hausgraph  43297
  Copyright terms: Public domain W3C validator