MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustop Structured version   Visualization version   GIF version

Theorem haustop 23218
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
haustop (𝐽 ∈ Haus → 𝐽 ∈ Top)

Proof of Theorem haustop
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 𝐽 = 𝐽
21ishaus 23209 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simplbi 497 1 (𝐽 ∈ Haus → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  c0 4296   cuni 4871  Topctop 22780  Hauscha 23195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-ss 3931  df-uni 4872  df-haus 23202
This theorem is referenced by:  haust1  23239  resthaus  23255  sshaus  23262  lmmo  23267  hauscmplem  23293  hauscmp  23294  hauslly  23379  hausllycmp  23381  kgenhaus  23431  pthaus  23525  txhaus  23534  xkohaus  23540  haushmph  23679  cmphaushmeo  23687  hausflim  23868  hauspwpwf1  23874  hauspwpwdom  23875  hausflf  23884  cnextfun  23951  cnextfvval  23952  cnextf  23953  cnextcn  23954  cnextfres1  23955  cnextfres  23956  qtophaus  33826  ismntop  34016  poimirlem30  37644  hausgraph  43194
  Copyright terms: Public domain W3C validator