Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > haustop | Structured version Visualization version GIF version |
Description: A Hausdorff space is a topology. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
haustop | ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ishaus 22381 | . 2 ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ∅c0 4253 ∪ cuni 4836 Topctop 21950 Hauscha 22367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-haus 22374 |
This theorem is referenced by: haust1 22411 resthaus 22427 sshaus 22434 lmmo 22439 hauscmplem 22465 hauscmp 22466 hauslly 22551 hausllycmp 22553 kgenhaus 22603 pthaus 22697 txhaus 22706 xkohaus 22712 haushmph 22851 cmphaushmeo 22859 hausflim 23040 hauspwpwf1 23046 hauspwpwdom 23047 hausflf 23056 cnextfun 23123 cnextfvval 23124 cnextf 23125 cnextcn 23126 cnextfres1 23127 cnextfres 23128 qtophaus 31688 ismntop 31876 poimirlem30 35734 hausgraph 40953 |
Copyright terms: Public domain | W3C validator |