MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   GIF version

Theorem pthaus 23667
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)

Proof of Theorem pthaus
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23360 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Top)
21ssriv 4012 . . . 4 Haus ⊆ Top
3 fss 6763 . . . 4 ((𝐹:𝐴⟶Haus ∧ Haus ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 690 . . 3 (𝐹:𝐴⟶Haus → 𝐹:𝐴⟶Top)
5 pttop 23611 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 592 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Top)
7 simprl 770 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
8 eqid 2740 . . . . . . . . . . 11 (∏t𝐹) = (∏t𝐹)
98ptuni 23623 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
104, 9sylan2 592 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Haus) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1110adantr 480 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
127, 11eleqtrrd 2847 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑘𝐴 (𝐹𝑘))
13 ixpfn 8961 . . . . . . 7 (𝑥X𝑘𝐴 (𝐹𝑘) → 𝑥 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
15 simprr 772 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
1615, 11eleqtrrd 2847 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑘𝐴 (𝐹𝑘))
17 ixpfn 8961 . . . . . . 7 (𝑦X𝑘𝐴 (𝐹𝑘) → 𝑦 Fn 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
19 eqfnfv 7064 . . . . . 6 ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2014, 18, 19syl2anc 583 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2120necon3abid 2983 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
22 rexnal 3106 . . . . 5 (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘))
23 df-ne 2947 . . . . . . 7 ((𝑥𝑘) ≠ (𝑦𝑘) ↔ ¬ (𝑥𝑘) = (𝑦𝑘))
24 simpllr 775 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝐹:𝐴⟶Haus)
25 simprl 770 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝑘𝐴)
2624, 25ffvelcdmd 7119 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝐹𝑘) ∈ Haus)
27 vex 3492 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2827elixp 8962 . . . . . . . . . . . . . 14 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
2928simprbi 496 . . . . . . . . . . . . 13 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3012, 29syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3130r19.21bi 3257 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑥𝑘) ∈ (𝐹𝑘))
3231adantrr 716 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ∈ (𝐹𝑘))
33 vex 3492 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3433elixp 8962 . . . . . . . . . . . . . 14 (𝑦X𝑘𝐴 (𝐹𝑘) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘)))
3534simprbi 496 . . . . . . . . . . . . 13 (𝑦X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3616, 35syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3736r19.21bi 3257 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑦𝑘) ∈ (𝐹𝑘))
3837adantrr 716 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑦𝑘) ∈ (𝐹𝑘))
39 simprr 772 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ≠ (𝑦𝑘))
40 eqid 2740 . . . . . . . . . . 11 (𝐹𝑘) = (𝐹𝑘)
4140hausnei 23357 . . . . . . . . . 10 (((𝐹𝑘) ∈ Haus ∧ ((𝑥𝑘) ∈ (𝐹𝑘) ∧ (𝑦𝑘) ∈ (𝐹𝑘) ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
4226, 32, 38, 39, 41syl13anc 1372 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
43 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐴𝑉)
444ad4antlr 732 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐹:𝐴⟶Top)
4525adantr 480 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑘𝐴)
46 eqid 2740 . . . . . . . . . . . . . . 15 (∏t𝐹) = (∏t𝐹)
4746, 8ptpjcn 23640 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
4843, 44, 45, 47syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
49 simprll 778 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑚 ∈ (𝐹𝑘))
50 eqid 2740 . . . . . . . . . . . . . . 15 (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) = (𝑧 (∏t𝐹) ↦ (𝑧𝑘))
5150mptpreima 6269 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}
52 cnima 23294 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) ∈ (∏t𝐹))
5351, 52eqeltrrid 2849 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
5448, 49, 53syl2anc 583 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
55 simprlr 779 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑛 ∈ (𝐹𝑘))
5650mptpreima 6269 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}
57 cnima 23294 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) ∈ (∏t𝐹))
5856, 57eqeltrrid 2849 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
5948, 55, 58syl2anc 583 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
60 fveq1 6919 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
6160eleq1d 2829 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑧𝑘) ∈ 𝑚 ↔ (𝑥𝑘) ∈ 𝑚))
627ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 (∏t𝐹))
63 simprr1 1221 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑥𝑘) ∈ 𝑚)
6461, 62, 63elrabd 3710 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚})
65 fveq1 6919 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧𝑘) = (𝑦𝑘))
6665eleq1d 2829 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧𝑘) ∈ 𝑛 ↔ (𝑦𝑘) ∈ 𝑛))
6715ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 (∏t𝐹))
68 simprr2 1222 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑦𝑘) ∈ 𝑛)
6966, 67, 68elrabd 3710 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛})
70 inrab 4335 . . . . . . . . . . . . 13 ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)}
71 simprr3 1223 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑚𝑛) = ∅)
72 inelcm 4488 . . . . . . . . . . . . . . . . 17 (((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛) → (𝑚𝑛) ≠ ∅)
7372necon2bi 2977 . . . . . . . . . . . . . . . 16 ((𝑚𝑛) = ∅ → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7574ralrimivw 3156 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
76 rabeq0 4411 . . . . . . . . . . . . . 14 ({𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅ ↔ ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7775, 76sylibr 234 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅)
7870, 77eqtrid 2792 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)
79 eleq2 2833 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑥𝑢𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}))
80 ineq1 4234 . . . . . . . . . . . . . . 15 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑢𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣))
8180eqeq1d 2742 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑢𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅))
8279, 813anbi13d 1438 . . . . . . . . . . . . 13 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅)))
83 eleq2 2833 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (𝑦𝑣𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
84 ineq2 4235 . . . . . . . . . . . . . . 15 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
8584eqeq1d 2742 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅))
8683, 853anbi23d 1439 . . . . . . . . . . . . 13 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ((𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)))
8782, 86rspc2ev 3648 . . . . . . . . . . . 12 (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹) ∧ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹) ∧ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8854, 59, 64, 69, 78, 87syl113anc 1382 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8988expr 456 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ (𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘))) → (((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9089rexlimdvva 3219 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9142, 90mpd 15 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9291expr 456 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → ((𝑥𝑘) ≠ (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9323, 92biimtrrid 243 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9493rexlimdva 3161 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9522, 94biimtrrid 243 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9621, 95sylbid 240 . . 3 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9796ralrimivva 3208 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9846ishaus 23351 . 2 ((∏t𝐹) ∈ Haus ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
996, 97, 98sylanbrc 582 1 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976  c0 4352   cuni 4931  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Xcixp 8955  tcpt 17498  Topctop 22920   Cn ccn 23253  Hauscha 23337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1o 8522  df-2o 8523  df-map 8886  df-ixp 8956  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-pt 17504  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-haus 23344
This theorem is referenced by:  poimirlem30  37610
  Copyright terms: Public domain W3C validator