MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   GIF version

Theorem pthaus 23646
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)

Proof of Theorem pthaus
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23339 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Top)
21ssriv 3987 . . . 4 Haus ⊆ Top
3 fss 6752 . . . 4 ((𝐹:𝐴⟶Haus ∧ Haus ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 691 . . 3 (𝐹:𝐴⟶Haus → 𝐹:𝐴⟶Top)
5 pttop 23590 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Top)
7 simprl 771 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
8 eqid 2737 . . . . . . . . . . 11 (∏t𝐹) = (∏t𝐹)
98ptuni 23602 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
104, 9sylan2 593 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Haus) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1110adantr 480 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
127, 11eleqtrrd 2844 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑘𝐴 (𝐹𝑘))
13 ixpfn 8943 . . . . . . 7 (𝑥X𝑘𝐴 (𝐹𝑘) → 𝑥 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
15 simprr 773 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
1615, 11eleqtrrd 2844 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑘𝐴 (𝐹𝑘))
17 ixpfn 8943 . . . . . . 7 (𝑦X𝑘𝐴 (𝐹𝑘) → 𝑦 Fn 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
19 eqfnfv 7051 . . . . . 6 ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2014, 18, 19syl2anc 584 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2120necon3abid 2977 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
22 rexnal 3100 . . . . 5 (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘))
23 df-ne 2941 . . . . . . 7 ((𝑥𝑘) ≠ (𝑦𝑘) ↔ ¬ (𝑥𝑘) = (𝑦𝑘))
24 simpllr 776 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝐹:𝐴⟶Haus)
25 simprl 771 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝑘𝐴)
2624, 25ffvelcdmd 7105 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝐹𝑘) ∈ Haus)
27 vex 3484 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2827elixp 8944 . . . . . . . . . . . . . 14 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
2928simprbi 496 . . . . . . . . . . . . 13 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3012, 29syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3130r19.21bi 3251 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑥𝑘) ∈ (𝐹𝑘))
3231adantrr 717 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ∈ (𝐹𝑘))
33 vex 3484 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3433elixp 8944 . . . . . . . . . . . . . 14 (𝑦X𝑘𝐴 (𝐹𝑘) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘)))
3534simprbi 496 . . . . . . . . . . . . 13 (𝑦X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3616, 35syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3736r19.21bi 3251 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑦𝑘) ∈ (𝐹𝑘))
3837adantrr 717 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑦𝑘) ∈ (𝐹𝑘))
39 simprr 773 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ≠ (𝑦𝑘))
40 eqid 2737 . . . . . . . . . . 11 (𝐹𝑘) = (𝐹𝑘)
4140hausnei 23336 . . . . . . . . . 10 (((𝐹𝑘) ∈ Haus ∧ ((𝑥𝑘) ∈ (𝐹𝑘) ∧ (𝑦𝑘) ∈ (𝐹𝑘) ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
4226, 32, 38, 39, 41syl13anc 1374 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
43 simp-4l 783 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐴𝑉)
444ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐹:𝐴⟶Top)
4525adantr 480 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑘𝐴)
46 eqid 2737 . . . . . . . . . . . . . . 15 (∏t𝐹) = (∏t𝐹)
4746, 8ptpjcn 23619 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
4843, 44, 45, 47syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
49 simprll 779 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑚 ∈ (𝐹𝑘))
50 eqid 2737 . . . . . . . . . . . . . . 15 (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) = (𝑧 (∏t𝐹) ↦ (𝑧𝑘))
5150mptpreima 6258 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}
52 cnima 23273 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) ∈ (∏t𝐹))
5351, 52eqeltrrid 2846 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
5448, 49, 53syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
55 simprlr 780 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑛 ∈ (𝐹𝑘))
5650mptpreima 6258 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}
57 cnima 23273 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) ∈ (∏t𝐹))
5856, 57eqeltrrid 2846 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
5948, 55, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
60 fveq1 6905 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
6160eleq1d 2826 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑧𝑘) ∈ 𝑚 ↔ (𝑥𝑘) ∈ 𝑚))
627ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 (∏t𝐹))
63 simprr1 1222 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑥𝑘) ∈ 𝑚)
6461, 62, 63elrabd 3694 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚})
65 fveq1 6905 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧𝑘) = (𝑦𝑘))
6665eleq1d 2826 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧𝑘) ∈ 𝑛 ↔ (𝑦𝑘) ∈ 𝑛))
6715ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 (∏t𝐹))
68 simprr2 1223 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑦𝑘) ∈ 𝑛)
6966, 67, 68elrabd 3694 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛})
70 inrab 4316 . . . . . . . . . . . . 13 ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)}
71 simprr3 1224 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑚𝑛) = ∅)
72 inelcm 4465 . . . . . . . . . . . . . . . . 17 (((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛) → (𝑚𝑛) ≠ ∅)
7372necon2bi 2971 . . . . . . . . . . . . . . . 16 ((𝑚𝑛) = ∅ → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7574ralrimivw 3150 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
76 rabeq0 4388 . . . . . . . . . . . . . 14 ({𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅ ↔ ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7775, 76sylibr 234 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅)
7870, 77eqtrid 2789 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)
79 eleq2 2830 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑥𝑢𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}))
80 ineq1 4213 . . . . . . . . . . . . . . 15 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑢𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣))
8180eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑢𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅))
8279, 813anbi13d 1440 . . . . . . . . . . . . 13 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅)))
83 eleq2 2830 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (𝑦𝑣𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
84 ineq2 4214 . . . . . . . . . . . . . . 15 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
8584eqeq1d 2739 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅))
8683, 853anbi23d 1441 . . . . . . . . . . . . 13 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ((𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)))
8782, 86rspc2ev 3635 . . . . . . . . . . . 12 (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹) ∧ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹) ∧ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8854, 59, 64, 69, 78, 87syl113anc 1384 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8988expr 456 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ (𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘))) → (((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9089rexlimdvva 3213 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9142, 90mpd 15 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9291expr 456 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → ((𝑥𝑘) ≠ (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9323, 92biimtrrid 243 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9493rexlimdva 3155 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9522, 94biimtrrid 243 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9621, 95sylbid 240 . . 3 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9796ralrimivva 3202 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9846ishaus 23330 . 2 ((∏t𝐹) ∈ Haus ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
996, 97, 98sylanbrc 583 1 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  c0 4333   cuni 4907  cmpt 5225  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Xcixp 8937  tcpt 17483  Topctop 22899   Cn ccn 23232  Hauscha 23316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8506  df-2o 8507  df-map 8868  df-ixp 8938  df-en 8986  df-fin 8989  df-fi 9451  df-topgen 17488  df-pt 17489  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-haus 23323
This theorem is referenced by:  poimirlem30  37657
  Copyright terms: Public domain W3C validator