MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   GIF version

Theorem pthaus 23576
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)

Proof of Theorem pthaus
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23269 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Top)
21ssriv 3962 . . . 4 Haus ⊆ Top
3 fss 6722 . . . 4 ((𝐹:𝐴⟶Haus ∧ Haus ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 691 . . 3 (𝐹:𝐴⟶Haus → 𝐹:𝐴⟶Top)
5 pttop 23520 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Top)
7 simprl 770 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
8 eqid 2735 . . . . . . . . . . 11 (∏t𝐹) = (∏t𝐹)
98ptuni 23532 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
104, 9sylan2 593 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Haus) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1110adantr 480 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
127, 11eleqtrrd 2837 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑘𝐴 (𝐹𝑘))
13 ixpfn 8917 . . . . . . 7 (𝑥X𝑘𝐴 (𝐹𝑘) → 𝑥 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
15 simprr 772 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
1615, 11eleqtrrd 2837 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑘𝐴 (𝐹𝑘))
17 ixpfn 8917 . . . . . . 7 (𝑦X𝑘𝐴 (𝐹𝑘) → 𝑦 Fn 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
19 eqfnfv 7021 . . . . . 6 ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2014, 18, 19syl2anc 584 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2120necon3abid 2968 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
22 rexnal 3089 . . . . 5 (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘))
23 df-ne 2933 . . . . . . 7 ((𝑥𝑘) ≠ (𝑦𝑘) ↔ ¬ (𝑥𝑘) = (𝑦𝑘))
24 simpllr 775 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝐹:𝐴⟶Haus)
25 simprl 770 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝑘𝐴)
2624, 25ffvelcdmd 7075 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝐹𝑘) ∈ Haus)
27 vex 3463 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2827elixp 8918 . . . . . . . . . . . . . 14 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
2928simprbi 496 . . . . . . . . . . . . 13 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3012, 29syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3130r19.21bi 3234 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑥𝑘) ∈ (𝐹𝑘))
3231adantrr 717 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ∈ (𝐹𝑘))
33 vex 3463 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3433elixp 8918 . . . . . . . . . . . . . 14 (𝑦X𝑘𝐴 (𝐹𝑘) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘)))
3534simprbi 496 . . . . . . . . . . . . 13 (𝑦X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3616, 35syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3736r19.21bi 3234 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑦𝑘) ∈ (𝐹𝑘))
3837adantrr 717 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑦𝑘) ∈ (𝐹𝑘))
39 simprr 772 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ≠ (𝑦𝑘))
40 eqid 2735 . . . . . . . . . . 11 (𝐹𝑘) = (𝐹𝑘)
4140hausnei 23266 . . . . . . . . . 10 (((𝐹𝑘) ∈ Haus ∧ ((𝑥𝑘) ∈ (𝐹𝑘) ∧ (𝑦𝑘) ∈ (𝐹𝑘) ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
4226, 32, 38, 39, 41syl13anc 1374 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
43 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐴𝑉)
444ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐹:𝐴⟶Top)
4525adantr 480 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑘𝐴)
46 eqid 2735 . . . . . . . . . . . . . . 15 (∏t𝐹) = (∏t𝐹)
4746, 8ptpjcn 23549 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
4843, 44, 45, 47syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
49 simprll 778 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑚 ∈ (𝐹𝑘))
50 eqid 2735 . . . . . . . . . . . . . . 15 (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) = (𝑧 (∏t𝐹) ↦ (𝑧𝑘))
5150mptpreima 6227 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}
52 cnima 23203 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) ∈ (∏t𝐹))
5351, 52eqeltrrid 2839 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
5448, 49, 53syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
55 simprlr 779 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑛 ∈ (𝐹𝑘))
5650mptpreima 6227 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}
57 cnima 23203 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) ∈ (∏t𝐹))
5856, 57eqeltrrid 2839 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
5948, 55, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
60 fveq1 6875 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
6160eleq1d 2819 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑧𝑘) ∈ 𝑚 ↔ (𝑥𝑘) ∈ 𝑚))
627ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 (∏t𝐹))
63 simprr1 1222 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑥𝑘) ∈ 𝑚)
6461, 62, 63elrabd 3673 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚})
65 fveq1 6875 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧𝑘) = (𝑦𝑘))
6665eleq1d 2819 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧𝑘) ∈ 𝑛 ↔ (𝑦𝑘) ∈ 𝑛))
6715ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 (∏t𝐹))
68 simprr2 1223 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑦𝑘) ∈ 𝑛)
6966, 67, 68elrabd 3673 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛})
70 inrab 4291 . . . . . . . . . . . . 13 ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)}
71 simprr3 1224 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑚𝑛) = ∅)
72 inelcm 4440 . . . . . . . . . . . . . . . . 17 (((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛) → (𝑚𝑛) ≠ ∅)
7372necon2bi 2962 . . . . . . . . . . . . . . . 16 ((𝑚𝑛) = ∅ → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7574ralrimivw 3136 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
76 rabeq0 4363 . . . . . . . . . . . . . 14 ({𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅ ↔ ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7775, 76sylibr 234 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅)
7870, 77eqtrid 2782 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)
79 eleq2 2823 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑥𝑢𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}))
80 ineq1 4188 . . . . . . . . . . . . . . 15 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑢𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣))
8180eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑢𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅))
8279, 813anbi13d 1440 . . . . . . . . . . . . 13 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅)))
83 eleq2 2823 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (𝑦𝑣𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
84 ineq2 4189 . . . . . . . . . . . . . . 15 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
8584eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅))
8683, 853anbi23d 1441 . . . . . . . . . . . . 13 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ((𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)))
8782, 86rspc2ev 3614 . . . . . . . . . . . 12 (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹) ∧ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹) ∧ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8854, 59, 64, 69, 78, 87syl113anc 1384 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8988expr 456 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ (𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘))) → (((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9089rexlimdvva 3198 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9142, 90mpd 15 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9291expr 456 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → ((𝑥𝑘) ≠ (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9323, 92biimtrrid 243 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9493rexlimdva 3141 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9522, 94biimtrrid 243 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9621, 95sylbid 240 . . 3 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9796ralrimivva 3187 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9846ishaus 23260 . 2 ((∏t𝐹) ∈ Haus ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
996, 97, 98sylanbrc 583 1 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cin 3925  wss 3926  c0 4308   cuni 4883  cmpt 5201  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Xcixp 8911  tcpt 17452  Topctop 22831   Cn ccn 23162  Hauscha 23246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1o 8480  df-2o 8481  df-map 8842  df-ixp 8912  df-en 8960  df-fin 8963  df-fi 9423  df-topgen 17457  df-pt 17458  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-haus 23253
This theorem is referenced by:  poimirlem30  37674
  Copyright terms: Public domain W3C validator