MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   GIF version

Theorem pthaus 22789
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)

Proof of Theorem pthaus
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 22482 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Top)
21ssriv 3925 . . . 4 Haus ⊆ Top
3 fss 6617 . . . 4 ((𝐹:𝐴⟶Haus ∧ Haus ⊆ Top) → 𝐹:𝐴⟶Top)
42, 3mpan2 688 . . 3 (𝐹:𝐴⟶Haus → 𝐹:𝐴⟶Top)
5 pttop 22733 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
64, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Top)
7 simprl 768 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 (∏t𝐹))
8 eqid 2738 . . . . . . . . . . 11 (∏t𝐹) = (∏t𝐹)
98ptuni 22745 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
104, 9sylan2 593 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Haus) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1110adantr 481 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
127, 11eleqtrrd 2842 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥X𝑘𝐴 (𝐹𝑘))
13 ixpfn 8691 . . . . . . 7 (𝑥X𝑘𝐴 (𝐹𝑘) → 𝑥 Fn 𝐴)
1412, 13syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑥 Fn 𝐴)
15 simprr 770 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 (∏t𝐹))
1615, 11eleqtrrd 2842 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦X𝑘𝐴 (𝐹𝑘))
17 ixpfn 8691 . . . . . . 7 (𝑦X𝑘𝐴 (𝐹𝑘) → 𝑦 Fn 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → 𝑦 Fn 𝐴)
19 eqfnfv 6909 . . . . . 6 ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2014, 18, 19syl2anc 584 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥 = 𝑦 ↔ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
2120necon3abid 2980 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘)))
22 rexnal 3169 . . . . 5 (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) ↔ ¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘))
23 df-ne 2944 . . . . . . 7 ((𝑥𝑘) ≠ (𝑦𝑘) ↔ ¬ (𝑥𝑘) = (𝑦𝑘))
24 simpllr 773 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝐹:𝐴⟶Haus)
25 simprl 768 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → 𝑘𝐴)
2624, 25ffvelrnd 6962 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝐹𝑘) ∈ Haus)
27 vex 3436 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2827elixp 8692 . . . . . . . . . . . . . 14 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
2928simprbi 497 . . . . . . . . . . . . 13 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3012, 29syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
3130r19.21bi 3134 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑥𝑘) ∈ (𝐹𝑘))
3231adantrr 714 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ∈ (𝐹𝑘))
33 vex 3436 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3433elixp 8692 . . . . . . . . . . . . . 14 (𝑦X𝑘𝐴 (𝐹𝑘) ↔ (𝑦 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘)))
3534simprbi 497 . . . . . . . . . . . . 13 (𝑦X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3616, 35syl 17 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → ∀𝑘𝐴 (𝑦𝑘) ∈ (𝐹𝑘))
3736r19.21bi 3134 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (𝑦𝑘) ∈ (𝐹𝑘))
3837adantrr 714 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑦𝑘) ∈ (𝐹𝑘))
39 simprr 770 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (𝑥𝑘) ≠ (𝑦𝑘))
40 eqid 2738 . . . . . . . . . . 11 (𝐹𝑘) = (𝐹𝑘)
4140hausnei 22479 . . . . . . . . . 10 (((𝐹𝑘) ∈ Haus ∧ ((𝑥𝑘) ∈ (𝐹𝑘) ∧ (𝑦𝑘) ∈ (𝐹𝑘) ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
4226, 32, 38, 39, 41syl13anc 1371 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
43 simp-4l 780 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐴𝑉)
444ad4antlr 730 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐹:𝐴⟶Top)
4525adantr 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑘𝐴)
46 eqid 2738 . . . . . . . . . . . . . . 15 (∏t𝐹) = (∏t𝐹)
4746, 8ptpjcn 22762 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
4843, 44, 45, 47syl3anc 1370 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)))
49 simprll 776 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑚 ∈ (𝐹𝑘))
50 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧 (∏t𝐹) ↦ (𝑧𝑘)) = (𝑧 (∏t𝐹) ↦ (𝑧𝑘))
5150mptpreima 6141 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}
52 cnima 22416 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑚) ∈ (∏t𝐹))
5351, 52eqeltrrid 2844 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑚 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
5448, 49, 53syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹))
55 simprlr 777 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑛 ∈ (𝐹𝑘))
5650mptpreima 6141 . . . . . . . . . . . . . 14 ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}
57 cnima 22416 . . . . . . . . . . . . . 14 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → ((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) “ 𝑛) ∈ (∏t𝐹))
5856, 57eqeltrrid 2844 . . . . . . . . . . . . 13 (((𝑧 (∏t𝐹) ↦ (𝑧𝑘)) ∈ ((∏t𝐹) Cn (𝐹𝑘)) ∧ 𝑛 ∈ (𝐹𝑘)) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
5948, 55, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹))
60 fveq1 6773 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
6160eleq1d 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑧𝑘) ∈ 𝑚 ↔ (𝑥𝑘) ∈ 𝑚))
627ad2antrr 723 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 (∏t𝐹))
63 simprr1 1220 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑥𝑘) ∈ 𝑚)
6461, 62, 63elrabd 3626 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚})
65 fveq1 6773 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧𝑘) = (𝑦𝑘))
6665eleq1d 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧𝑘) ∈ 𝑛 ↔ (𝑦𝑘) ∈ 𝑛))
6715ad2antrr 723 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 (∏t𝐹))
68 simprr2 1221 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑦𝑘) ∈ 𝑛)
6966, 67, 68elrabd 3626 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛})
70 inrab 4240 . . . . . . . . . . . . 13 ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)}
71 simprr3 1222 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑚𝑛) = ∅)
72 inelcm 4398 . . . . . . . . . . . . . . . . 17 (((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛) → (𝑚𝑛) ≠ ∅)
7372necon2bi 2974 . . . . . . . . . . . . . . . 16 ((𝑚𝑛) = ∅ → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7471, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7574ralrimivw 3104 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
76 rabeq0 4318 . . . . . . . . . . . . . 14 ({𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅ ↔ ∀𝑧 (∏t𝐹) ¬ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛))
7775, 76sylibr 233 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → {𝑧 (∏t𝐹) ∣ ((𝑧𝑘) ∈ 𝑚 ∧ (𝑧𝑘) ∈ 𝑛)} = ∅)
7870, 77eqtrid 2790 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)
79 eleq2 2827 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑥𝑢𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚}))
80 ineq1 4139 . . . . . . . . . . . . . . 15 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → (𝑢𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣))
8180eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑢𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅))
8279, 813anbi13d 1437 . . . . . . . . . . . . 13 (𝑢 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅)))
83 eleq2 2827 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (𝑦𝑣𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
84 ineq2 4140 . . . . . . . . . . . . . . 15 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}))
8584eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅ ↔ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅))
8683, 853anbi23d 1438 . . . . . . . . . . . . 13 (𝑣 = {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} → ((𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦𝑣 ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)))
8782, 86rspc2ev 3572 . . . . . . . . . . . 12 (({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∈ (∏t𝐹) ∧ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∈ (∏t𝐹) ∧ (𝑥 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∧ 𝑦 ∈ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛} ∧ ({𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑚} ∩ {𝑧 (∏t𝐹) ∣ (𝑧𝑘) ∈ 𝑛}) = ∅)) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8854, 59, 64, 69, 78, 87syl113anc 1381 . . . . . . . . . . 11 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ ((𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘)) ∧ ((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
8988expr 457 . . . . . . . . . 10 (((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) ∧ (𝑚 ∈ (𝐹𝑘) ∧ 𝑛 ∈ (𝐹𝑘))) → (((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9089rexlimdvva 3223 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → (∃𝑚 ∈ (𝐹𝑘)∃𝑛 ∈ (𝐹𝑘)((𝑥𝑘) ∈ 𝑚 ∧ (𝑦𝑘) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9142, 90mpd 15 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ (𝑘𝐴 ∧ (𝑥𝑘) ≠ (𝑦𝑘))) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
9291expr 457 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → ((𝑥𝑘) ≠ (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9323, 92syl5bir 242 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) ∧ 𝑘𝐴) → (¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9493rexlimdva 3213 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (∃𝑘𝐴 ¬ (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9522, 94syl5bir 242 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (¬ ∀𝑘𝐴 (𝑥𝑘) = (𝑦𝑘) → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9621, 95sylbid 239 . . 3 (((𝐴𝑉𝐹:𝐴⟶Haus) ∧ (𝑥 (∏t𝐹) ∧ 𝑦 (∏t𝐹))) → (𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9796ralrimivva 3123 . 2 ((𝐴𝑉𝐹:𝐴⟶Haus) → ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
9846ishaus 22473 . 2 ((∏t𝐹) ∈ Haus ↔ ((∏t𝐹) ∈ Top ∧ ∀𝑥 (∏t𝐹)∀𝑦 (∏t𝐹)(𝑥𝑦 → ∃𝑢 ∈ (∏t𝐹)∃𝑣 ∈ (∏t𝐹)(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
996, 97, 98sylanbrc 583 1 ((𝐴𝑉𝐹:𝐴⟶Haus) → (∏t𝐹) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  c0 4256   cuni 4839  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Xcixp 8685  tcpt 17149  Topctop 22042   Cn ccn 22375  Hauscha 22459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-haus 22466
This theorem is referenced by:  poimirlem30  35807
  Copyright terms: Public domain W3C validator