Step | Hyp | Ref
| Expression |
1 | | distop 21700 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
2 | | simplrl 776 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ 𝐴) |
3 | 2 | snssd 4702 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑥} ⊆ 𝐴) |
4 | | snex 5303 |
. . . . . . 7
⊢ {𝑥} ∈ V |
5 | 4 | elpw 4501 |
. . . . . 6
⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) |
6 | 3, 5 | sylibr 237 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑥} ∈ 𝒫 𝐴) |
7 | | simplrr 777 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ 𝐴) |
8 | 7 | snssd 4702 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑦} ⊆ 𝐴) |
9 | | snex 5303 |
. . . . . . 7
⊢ {𝑦} ∈ V |
10 | 9 | elpw 4501 |
. . . . . 6
⊢ ({𝑦} ∈ 𝒫 𝐴 ↔ {𝑦} ⊆ 𝐴) |
11 | 8, 10 | sylibr 237 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑦} ∈ 𝒫 𝐴) |
12 | | vsnid 4562 |
. . . . . 6
⊢ 𝑥 ∈ {𝑥} |
13 | 12 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ {𝑥}) |
14 | | vsnid 4562 |
. . . . . 6
⊢ 𝑦 ∈ {𝑦} |
15 | 14 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ {𝑦}) |
16 | | disjsn2 4608 |
. . . . . 6
⊢ (𝑥 ≠ 𝑦 → ({𝑥} ∩ {𝑦}) = ∅) |
17 | 16 | adantl 485 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → ({𝑥} ∩ {𝑦}) = ∅) |
18 | | eleq2 2840 |
. . . . . . 7
⊢ (𝑢 = {𝑥} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑥})) |
19 | | ineq1 4111 |
. . . . . . . 8
⊢ (𝑢 = {𝑥} → (𝑢 ∩ 𝑣) = ({𝑥} ∩ 𝑣)) |
20 | 19 | eqeq1d 2760 |
. . . . . . 7
⊢ (𝑢 = {𝑥} → ((𝑢 ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ 𝑣) = ∅)) |
21 | 18, 20 | 3anbi13d 1435 |
. . . . . 6
⊢ (𝑢 = {𝑥} → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ 𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅))) |
22 | | eleq2 2840 |
. . . . . . 7
⊢ (𝑣 = {𝑦} → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ {𝑦})) |
23 | | ineq2 4113 |
. . . . . . . 8
⊢ (𝑣 = {𝑦} → ({𝑥} ∩ 𝑣) = ({𝑥} ∩ {𝑦})) |
24 | 23 | eqeq1d 2760 |
. . . . . . 7
⊢ (𝑣 = {𝑦} → (({𝑥} ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅)) |
25 | 22, 24 | 3anbi23d 1436 |
. . . . . 6
⊢ (𝑣 = {𝑦} → ((𝑥 ∈ {𝑥} ∧ 𝑦 ∈ 𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅))) |
26 | 21, 25 | rspc2ev 3555 |
. . . . 5
⊢ (({𝑥} ∈ 𝒫 𝐴 ∧ {𝑦} ∈ 𝒫 𝐴 ∧ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)) → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
27 | 6, 11, 13, 15, 17, 26 | syl113anc 1379 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
28 | 27 | ex 416 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) |
29 | 28 | ralrimivva 3120 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) |
30 | | unipw 5314 |
. . . 4
⊢ ∪ 𝒫 𝐴 = 𝐴 |
31 | 30 | eqcomi 2767 |
. . 3
⊢ 𝐴 = ∪
𝒫 𝐴 |
32 | 31 | ishaus 22027 |
. 2
⊢
(𝒫 𝐴 ∈
Haus ↔ (𝒫 𝐴
∈ Top ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)))) |
33 | 1, 29, 32 | sylanbrc 586 |
1
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) |