| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | distop 23003 | . 2
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | 
| 2 |  | simplrl 776 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ 𝐴) | 
| 3 | 2 | snssd 4808 | . . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑥} ⊆ 𝐴) | 
| 4 |  | vsnex 5433 | . . . . . . 7
⊢ {𝑥} ∈ V | 
| 5 | 4 | elpw 4603 | . . . . . 6
⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) | 
| 6 | 3, 5 | sylibr 234 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑥} ∈ 𝒫 𝐴) | 
| 7 |  | simplrr 777 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ 𝐴) | 
| 8 | 7 | snssd 4808 | . . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑦} ⊆ 𝐴) | 
| 9 |  | vsnex 5433 | . . . . . . 7
⊢ {𝑦} ∈ V | 
| 10 | 9 | elpw 4603 | . . . . . 6
⊢ ({𝑦} ∈ 𝒫 𝐴 ↔ {𝑦} ⊆ 𝐴) | 
| 11 | 8, 10 | sylibr 234 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → {𝑦} ∈ 𝒫 𝐴) | 
| 12 |  | vsnid 4662 | . . . . . 6
⊢ 𝑥 ∈ {𝑥} | 
| 13 | 12 | a1i 11 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ {𝑥}) | 
| 14 |  | vsnid 4662 | . . . . . 6
⊢ 𝑦 ∈ {𝑦} | 
| 15 | 14 | a1i 11 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ {𝑦}) | 
| 16 |  | disjsn2 4711 | . . . . . 6
⊢ (𝑥 ≠ 𝑦 → ({𝑥} ∩ {𝑦}) = ∅) | 
| 17 | 16 | adantl 481 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → ({𝑥} ∩ {𝑦}) = ∅) | 
| 18 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑢 = {𝑥} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑥})) | 
| 19 |  | ineq1 4212 | . . . . . . . 8
⊢ (𝑢 = {𝑥} → (𝑢 ∩ 𝑣) = ({𝑥} ∩ 𝑣)) | 
| 20 | 19 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑢 = {𝑥} → ((𝑢 ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ 𝑣) = ∅)) | 
| 21 | 18, 20 | 3anbi13d 1439 | . . . . . 6
⊢ (𝑢 = {𝑥} → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ 𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅))) | 
| 22 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑣 = {𝑦} → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ {𝑦})) | 
| 23 |  | ineq2 4213 | . . . . . . . 8
⊢ (𝑣 = {𝑦} → ({𝑥} ∩ 𝑣) = ({𝑥} ∩ {𝑦})) | 
| 24 | 23 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑣 = {𝑦} → (({𝑥} ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅)) | 
| 25 | 22, 24 | 3anbi23d 1440 | . . . . . 6
⊢ (𝑣 = {𝑦} → ((𝑥 ∈ {𝑥} ∧ 𝑦 ∈ 𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅))) | 
| 26 | 21, 25 | rspc2ev 3634 | . . . . 5
⊢ (({𝑥} ∈ 𝒫 𝐴 ∧ {𝑦} ∈ 𝒫 𝐴 ∧ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)) → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 27 | 6, 11, 13, 15, 17, 26 | syl113anc 1383 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 28 | 27 | ex 412 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) | 
| 29 | 28 | ralrimivva 3201 | . 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) | 
| 30 |  | unipw 5454 | . . . 4
⊢ ∪ 𝒫 𝐴 = 𝐴 | 
| 31 | 30 | eqcomi 2745 | . . 3
⊢ 𝐴 = ∪
𝒫 𝐴 | 
| 32 | 31 | ishaus 23331 | . 2
⊢
(𝒫 𝐴 ∈
Haus ↔ (𝒫 𝐴
∈ Top ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ 𝒫 𝐴∃𝑣 ∈ 𝒫 𝐴(𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)))) | 
| 33 | 1, 29, 32 | sylanbrc 583 | 1
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) |