MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnhaus Structured version   Visualization version   GIF version

Theorem cnhaus 23269
Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnhaus ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)

Proof of Theorem cnhaus
Dummy variables 𝑥 𝑦 𝑣 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 23155 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1135 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐾 ∈ Haus)
4 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
6 eqid 2731 . . . . . . . . 9 𝐾 = 𝐾
75, 6cnf 23161 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹: 𝐽 𝐾)
9 simprll 778 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥 𝐽)
108, 9ffvelcdmd 7018 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ 𝐾)
11 simprlr 779 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦 𝐽)
128, 11ffvelcdmd 7018 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑦) ∈ 𝐾)
13 simprr 772 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑦)
14 simpl2 1193 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹:𝑋1-1𝑌)
158fdmd 6661 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝐽)
16 f1dm 6723 . . . . . . . . . . . 12 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
1714, 16syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝑋)
1815, 17eqtr3d 2768 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐽 = 𝑋)
199, 18eleqtrd 2833 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑋)
2011, 18eleqtrd 2833 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦𝑋)
21 f1fveq 7196 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2214, 19, 20, 21syl12anc 836 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2322necon3bid 2972 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
2413, 23mpbird 257 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
256hausnei 23243 . . . . . 6 ((𝐾 ∈ Haus ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾 ∧ (𝐹𝑥) ≠ (𝐹𝑦))) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
263, 10, 12, 24, 25syl13anc 1374 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
27 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾))
28 simprll 778 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑢𝐾)
29 cnima 23180 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → (𝐹𝑢) ∈ 𝐽)
3027, 28, 29syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑢) ∈ 𝐽)
31 simprlr 779 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑣𝐾)
32 cnima 23180 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣𝐾) → (𝐹𝑣) ∈ 𝐽)
3327, 31, 32syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑣) ∈ 𝐽)
349adantr 480 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 𝐽)
35 simprr1 1222 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑥) ∈ 𝑢)
368adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹: 𝐽 𝐾)
3736ffnd 6652 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 Fn 𝐽)
38 elpreima 6991 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
3937, 38syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
4034, 35, 39mpbir2and 713 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 ∈ (𝐹𝑢))
4111adantr 480 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 𝐽)
42 simprr2 1223 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑦) ∈ 𝑣)
43 elpreima 6991 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4437, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4541, 42, 44mpbir2and 713 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 ∈ (𝐹𝑣))
46 ffun 6654 . . . . . . . . . 10 (𝐹: 𝐽 𝐾 → Fun 𝐹)
47 inpreima 6997 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
4836, 46, 473syl 18 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
49 simprr3 1224 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑢𝑣) = ∅)
5049imaeq2d 6008 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ ∅))
51 ima0 6025 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
5250, 51eqtrdi 2782 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ∅)
5348, 52eqtr3d 2768 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)
54 eleq2 2820 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → (𝑥𝑚𝑥 ∈ (𝐹𝑢)))
55 ineq1 4160 . . . . . . . . . . 11 (𝑚 = (𝐹𝑢) → (𝑚𝑛) = ((𝐹𝑢) ∩ 𝑛))
5655eqeq1d 2733 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → ((𝑚𝑛) = ∅ ↔ ((𝐹𝑢) ∩ 𝑛) = ∅))
5754, 563anbi13d 1440 . . . . . . . . 9 (𝑚 = (𝐹𝑢) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅)))
58 eleq2 2820 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (𝑦𝑛𝑦 ∈ (𝐹𝑣)))
59 ineq2 4161 . . . . . . . . . . 11 (𝑛 = (𝐹𝑣) → ((𝐹𝑢) ∩ 𝑛) = ((𝐹𝑢) ∩ (𝐹𝑣)))
6059eqeq1d 2733 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (((𝐹𝑢) ∩ 𝑛) = ∅ ↔ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅))
6158, 603anbi23d 1441 . . . . . . . . 9 (𝑛 = (𝐹𝑣) → ((𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)))
6257, 61rspc2ev 3585 . . . . . . . 8 (((𝐹𝑢) ∈ 𝐽 ∧ (𝐹𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6330, 33, 40, 45, 53, 62syl113anc 1384 . . . . . . 7 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6463expr 456 . . . . . 6 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ (𝑢𝐾𝑣𝐾)) → (((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6564rexlimdvva 3189 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6626, 65mpd 15 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6766expr 456 . . 3 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6867ralrimivva 3175 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
695ishaus 23237 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
702, 68, 69sylanbrc 583 1 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3896  c0 4280   cuni 4856  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  Topctop 22808   Cn ccn 23139  Hauscha 23223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-top 22809  df-topon 22826  df-cn 23142  df-haus 23230
This theorem is referenced by:  resthaus  23283  sshaus  23290  haushmph  23707
  Copyright terms: Public domain W3C validator