MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnhaus Structured version   Visualization version   GIF version

Theorem cnhaus 22054
Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnhaus ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)

Proof of Theorem cnhaus
Dummy variables 𝑥 𝑦 𝑣 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 21940 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1132 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl1 1188 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐾 ∈ Haus)
4 simpl3 1190 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 eqid 2758 . . . . . . . . 9 𝐽 = 𝐽
6 eqid 2758 . . . . . . . . 9 𝐾 = 𝐾
75, 6cnf 21946 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹: 𝐽 𝐾)
9 simprll 778 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥 𝐽)
108, 9ffvelrnd 6843 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ 𝐾)
11 simprlr 779 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦 𝐽)
128, 11ffvelrnd 6843 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑦) ∈ 𝐾)
13 simprr 772 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑦)
14 simpl2 1189 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹:𝑋1-1𝑌)
158fdmd 6508 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝐽)
16 f1dm 6564 . . . . . . . . . . . 12 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
1714, 16syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝑋)
1815, 17eqtr3d 2795 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐽 = 𝑋)
199, 18eleqtrd 2854 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑋)
2011, 18eleqtrd 2854 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦𝑋)
21 f1fveq 7012 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2214, 19, 20, 21syl12anc 835 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2322necon3bid 2995 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
2413, 23mpbird 260 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
256hausnei 22028 . . . . . 6 ((𝐾 ∈ Haus ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾 ∧ (𝐹𝑥) ≠ (𝐹𝑦))) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
263, 10, 12, 24, 25syl13anc 1369 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
27 simpll3 1211 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾))
28 simprll 778 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑢𝐾)
29 cnima 21965 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → (𝐹𝑢) ∈ 𝐽)
3027, 28, 29syl2anc 587 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑢) ∈ 𝐽)
31 simprlr 779 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑣𝐾)
32 cnima 21965 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣𝐾) → (𝐹𝑣) ∈ 𝐽)
3327, 31, 32syl2anc 587 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑣) ∈ 𝐽)
349adantr 484 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 𝐽)
35 simprr1 1218 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑥) ∈ 𝑢)
368adantr 484 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹: 𝐽 𝐾)
3736ffnd 6499 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 Fn 𝐽)
38 elpreima 6819 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
3937, 38syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
4034, 35, 39mpbir2and 712 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 ∈ (𝐹𝑢))
4111adantr 484 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 𝐽)
42 simprr2 1219 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑦) ∈ 𝑣)
43 elpreima 6819 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4437, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4541, 42, 44mpbir2and 712 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 ∈ (𝐹𝑣))
46 ffun 6501 . . . . . . . . . 10 (𝐹: 𝐽 𝐾 → Fun 𝐹)
47 inpreima 6825 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
4836, 46, 473syl 18 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
49 simprr3 1220 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑢𝑣) = ∅)
5049imaeq2d 5901 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ ∅))
51 ima0 5917 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
5250, 51eqtrdi 2809 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ∅)
5348, 52eqtr3d 2795 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)
54 eleq2 2840 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → (𝑥𝑚𝑥 ∈ (𝐹𝑢)))
55 ineq1 4109 . . . . . . . . . . 11 (𝑚 = (𝐹𝑢) → (𝑚𝑛) = ((𝐹𝑢) ∩ 𝑛))
5655eqeq1d 2760 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → ((𝑚𝑛) = ∅ ↔ ((𝐹𝑢) ∩ 𝑛) = ∅))
5754, 563anbi13d 1435 . . . . . . . . 9 (𝑚 = (𝐹𝑢) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅)))
58 eleq2 2840 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (𝑦𝑛𝑦 ∈ (𝐹𝑣)))
59 ineq2 4111 . . . . . . . . . . 11 (𝑛 = (𝐹𝑣) → ((𝐹𝑢) ∩ 𝑛) = ((𝐹𝑢) ∩ (𝐹𝑣)))
6059eqeq1d 2760 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (((𝐹𝑢) ∩ 𝑛) = ∅ ↔ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅))
6158, 603anbi23d 1436 . . . . . . . . 9 (𝑛 = (𝐹𝑣) → ((𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)))
6257, 61rspc2ev 3553 . . . . . . . 8 (((𝐹𝑢) ∈ 𝐽 ∧ (𝐹𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6330, 33, 40, 45, 53, 62syl113anc 1379 . . . . . . 7 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6463expr 460 . . . . . 6 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ (𝑢𝐾𝑣𝐾)) → (((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6564rexlimdvva 3218 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6626, 65mpd 15 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6766expr 460 . . 3 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6867ralrimivva 3120 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
695ishaus 22022 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
702, 68, 69sylanbrc 586 1 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  cin 3857  c0 4225   cuni 4798  ccnv 5523  dom cdm 5524  cima 5527  Fun wfun 6329   Fn wfn 6330  wf 6331  1-1wf1 6332  cfv 6335  (class class class)co 7150  Topctop 21593   Cn ccn 21924  Hauscha 22008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-top 21594  df-topon 21611  df-cn 21927  df-haus 22015
This theorem is referenced by:  resthaus  22068  sshaus  22075  haushmph  22492
  Copyright terms: Public domain W3C validator