| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cntop1 23248 | . . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | 
| 2 | 1 | 3ad2ant3 1136 | . 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) | 
| 3 |  | simpl1 1192 | . . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐾 ∈ Haus) | 
| 4 |  | simpl3 1194 | . . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 5 |  | eqid 2737 | . . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 6 |  | eqid 2737 | . . . . . . . . 9
⊢ ∪ 𝐾 =
∪ 𝐾 | 
| 7 | 5, 6 | cnf 23254 | . . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 8 | 4, 7 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 9 |  | simprll 779 | . . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ∪ 𝐽) | 
| 10 | 8, 9 | ffvelcdmd 7105 | . . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ∪ 𝐾) | 
| 11 |  | simprlr 780 | . . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ∪ 𝐽) | 
| 12 | 8, 11 | ffvelcdmd 7105 | . . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑦) ∈ ∪ 𝐾) | 
| 13 |  | simprr 773 | . . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | 
| 14 |  | simpl2 1193 | . . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝑋–1-1→𝑌) | 
| 15 | 8 | fdmd 6746 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = ∪ 𝐽) | 
| 16 |  | f1dm 6808 | . . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1→𝑌 → dom 𝐹 = 𝑋) | 
| 17 | 14, 16 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = 𝑋) | 
| 18 | 15, 17 | eqtr3d 2779 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∪ 𝐽 = 𝑋) | 
| 19 | 9, 18 | eleqtrd 2843 | . . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑋) | 
| 20 | 11, 18 | eleqtrd 2843 | . . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑋) | 
| 21 |  | f1fveq 7282 | . . . . . . . . 9
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) | 
| 22 | 14, 19, 20, 21 | syl12anc 837 | . . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) | 
| 23 | 22 | necon3bid 2985 | . . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ 𝑦)) | 
| 24 | 13, 23 | mpbird 257 | . . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) | 
| 25 | 6 | hausnei 23336 | . . . . . 6
⊢ ((𝐾 ∈ Haus ∧ ((𝐹‘𝑥) ∈ ∪ 𝐾 ∧ (𝐹‘𝑦) ∈ ∪ 𝐾 ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 26 | 3, 10, 12, 24, 25 | syl13anc 1374 | . . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 27 |  | simpll3 1215 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 28 |  | simprll 779 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑢 ∈ 𝐾) | 
| 29 |  | cnima 23273 | . . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ 𝐽) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑢) ∈ 𝐽) | 
| 31 |  | simprlr 780 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑣 ∈ 𝐾) | 
| 32 |  | cnima 23273 | . . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣 ∈ 𝐾) → (◡𝐹 “ 𝑣) ∈ 𝐽) | 
| 33 | 27, 31, 32 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑣) ∈ 𝐽) | 
| 34 | 9 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ ∪ 𝐽) | 
| 35 |  | simprr1 1222 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑥) ∈ 𝑢) | 
| 36 | 8 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 37 | 36 | ffnd 6737 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 Fn ∪ 𝐽) | 
| 38 |  | elpreima 7078 | . . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) | 
| 39 | 37, 38 | syl 17 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) | 
| 40 | 34, 35, 39 | mpbir2and 713 | . . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ (◡𝐹 “ 𝑢)) | 
| 41 | 11 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ ∪ 𝐽) | 
| 42 |  | simprr2 1223 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑦) ∈ 𝑣) | 
| 43 |  | elpreima 7078 | . . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) | 
| 44 | 37, 43 | syl 17 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) | 
| 45 | 41, 42, 44 | mpbir2and 713 | . . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ (◡𝐹 “ 𝑣)) | 
| 46 |  | ffun 6739 | . . . . . . . . . 10
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ Fun 𝐹) | 
| 47 |  | inpreima 7084 | . . . . . . . . . 10
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) | 
| 48 | 36, 46, 47 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) | 
| 49 |  | simprr3 1224 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 ∩ 𝑣) = ∅) | 
| 50 | 49 | imaeq2d 6078 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ ∅)) | 
| 51 |  | ima0 6095 | . . . . . . . . . 10
⊢ (◡𝐹 “ ∅) = ∅ | 
| 52 | 50, 51 | eqtrdi 2793 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ∅) | 
| 53 | 48, 52 | eqtr3d 2779 | . . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅) | 
| 54 |  | eleq2 2830 | . . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑥 ∈ 𝑚 ↔ 𝑥 ∈ (◡𝐹 “ 𝑢))) | 
| 55 |  | ineq1 4213 | . . . . . . . . . . 11
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑚 ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ 𝑛)) | 
| 56 | 55 | eqeq1d 2739 | . . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑚 ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅)) | 
| 57 | 54, 56 | 3anbi13d 1440 | . . . . . . . . 9
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅))) | 
| 58 |  | eleq2 2830 | . . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (𝑦 ∈ 𝑛 ↔ 𝑦 ∈ (◡𝐹 “ 𝑣))) | 
| 59 |  | ineq2 4214 | . . . . . . . . . . 11
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((◡𝐹 “ 𝑢) ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) | 
| 60 | 59 | eqeq1d 2739 | . . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) | 
| 61 | 58, 60 | 3anbi23d 1441 | . . . . . . . . 9
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅))) | 
| 62 | 57, 61 | rspc2ev 3635 | . . . . . . . 8
⊢ (((◡𝐹 “ 𝑢) ∈ 𝐽 ∧ (◡𝐹 “ 𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 63 | 30, 33, 40, 45, 53, 62 | syl113anc 1384 | . . . . . . 7
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 64 | 63 | expr 456 | . . . . . 6
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾)) → (((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 65 | 64 | rexlimdvva 3213 | . . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 66 | 26, 65 | mpd 15 | . . . 4
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 67 | 66 | expr 456 | . . 3
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽)) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 68 | 67 | ralrimivva 3202 | . 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 69 | 5 | ishaus 23330 | . 2
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 70 | 2, 68, 69 | sylanbrc 583 | 1
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) |