MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnhaus Structured version   Visualization version   GIF version

Theorem cnhaus 21965
Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnhaus ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)

Proof of Theorem cnhaus
Dummy variables 𝑥 𝑦 𝑣 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 21851 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1131 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl1 1187 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐾 ∈ Haus)
4 simpl3 1189 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 eqid 2824 . . . . . . . . 9 𝐽 = 𝐽
6 eqid 2824 . . . . . . . . 9 𝐾 = 𝐾
75, 6cnf 21857 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹: 𝐽 𝐾)
9 simprll 777 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥 𝐽)
108, 9ffvelrnd 6855 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ 𝐾)
11 simprlr 778 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦 𝐽)
128, 11ffvelrnd 6855 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑦) ∈ 𝐾)
13 simprr 771 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑦)
14 simpl2 1188 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹:𝑋1-1𝑌)
158fdmd 6526 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝐽)
16 f1dm 6582 . . . . . . . . . . . 12 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
1714, 16syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝑋)
1815, 17eqtr3d 2861 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐽 = 𝑋)
199, 18eleqtrd 2918 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑋)
2011, 18eleqtrd 2918 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦𝑋)
21 f1fveq 7023 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2214, 19, 20, 21syl12anc 834 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2322necon3bid 3063 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
2413, 23mpbird 259 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
256hausnei 21939 . . . . . 6 ((𝐾 ∈ Haus ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾 ∧ (𝐹𝑥) ≠ (𝐹𝑦))) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
263, 10, 12, 24, 25syl13anc 1368 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
27 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾))
28 simprll 777 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑢𝐾)
29 cnima 21876 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → (𝐹𝑢) ∈ 𝐽)
3027, 28, 29syl2anc 586 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑢) ∈ 𝐽)
31 simprlr 778 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑣𝐾)
32 cnima 21876 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣𝐾) → (𝐹𝑣) ∈ 𝐽)
3327, 31, 32syl2anc 586 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑣) ∈ 𝐽)
349adantr 483 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 𝐽)
35 simprr1 1217 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑥) ∈ 𝑢)
368adantr 483 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹: 𝐽 𝐾)
3736ffnd 6518 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 Fn 𝐽)
38 elpreima 6831 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
3937, 38syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
4034, 35, 39mpbir2and 711 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 ∈ (𝐹𝑢))
4111adantr 483 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 𝐽)
42 simprr2 1218 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑦) ∈ 𝑣)
43 elpreima 6831 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4437, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4541, 42, 44mpbir2and 711 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 ∈ (𝐹𝑣))
46 ffun 6520 . . . . . . . . . 10 (𝐹: 𝐽 𝐾 → Fun 𝐹)
47 inpreima 6837 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
4836, 46, 473syl 18 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
49 simprr3 1219 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑢𝑣) = ∅)
5049imaeq2d 5932 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ ∅))
51 ima0 5948 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
5250, 51syl6eq 2875 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ∅)
5348, 52eqtr3d 2861 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)
54 eleq2 2904 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → (𝑥𝑚𝑥 ∈ (𝐹𝑢)))
55 ineq1 4184 . . . . . . . . . . 11 (𝑚 = (𝐹𝑢) → (𝑚𝑛) = ((𝐹𝑢) ∩ 𝑛))
5655eqeq1d 2826 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → ((𝑚𝑛) = ∅ ↔ ((𝐹𝑢) ∩ 𝑛) = ∅))
5754, 563anbi13d 1434 . . . . . . . . 9 (𝑚 = (𝐹𝑢) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅)))
58 eleq2 2904 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (𝑦𝑛𝑦 ∈ (𝐹𝑣)))
59 ineq2 4186 . . . . . . . . . . 11 (𝑛 = (𝐹𝑣) → ((𝐹𝑢) ∩ 𝑛) = ((𝐹𝑢) ∩ (𝐹𝑣)))
6059eqeq1d 2826 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (((𝐹𝑢) ∩ 𝑛) = ∅ ↔ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅))
6158, 603anbi23d 1435 . . . . . . . . 9 (𝑛 = (𝐹𝑣) → ((𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)))
6257, 61rspc2ev 3638 . . . . . . . 8 (((𝐹𝑢) ∈ 𝐽 ∧ (𝐹𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6330, 33, 40, 45, 53, 62syl113anc 1378 . . . . . . 7 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6463expr 459 . . . . . 6 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ (𝑢𝐾𝑣𝐾)) → (((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6564rexlimdvva 3297 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6626, 65mpd 15 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6766expr 459 . . 3 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6867ralrimivva 3194 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
695ishaus 21933 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
702, 68, 69sylanbrc 585 1 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cin 3938  c0 4294   cuni 4841  ccnv 5557  dom cdm 5558  cima 5561  Fun wfun 6352   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  (class class class)co 7159  Topctop 21504   Cn ccn 21835  Hauscha 21919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-top 21505  df-topon 21522  df-cn 21838  df-haus 21926
This theorem is referenced by:  resthaus  21979  sshaus  21986  haushmph  22403
  Copyright terms: Public domain W3C validator