MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnhaus Structured version   Visualization version   GIF version

Theorem cnhaus 23297
Description: The preimage of a Hausdorff topology under an injective map is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnhaus ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)

Proof of Theorem cnhaus
Dummy variables 𝑥 𝑦 𝑣 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 23183 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1135 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐾 ∈ Haus)
4 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 eqid 2736 . . . . . . . . 9 𝐽 = 𝐽
6 eqid 2736 . . . . . . . . 9 𝐾 = 𝐾
75, 6cnf 23189 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹: 𝐽 𝐾)
9 simprll 778 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥 𝐽)
108, 9ffvelcdmd 7080 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ 𝐾)
11 simprlr 779 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦 𝐽)
128, 11ffvelcdmd 7080 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑦) ∈ 𝐾)
13 simprr 772 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑦)
14 simpl2 1193 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐹:𝑋1-1𝑌)
158fdmd 6721 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝐽)
16 f1dm 6783 . . . . . . . . . . . 12 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
1714, 16syl 17 . . . . . . . . . . 11 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → dom 𝐹 = 𝑋)
1815, 17eqtr3d 2773 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝐽 = 𝑋)
199, 18eleqtrd 2837 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑥𝑋)
2011, 18eleqtrd 2837 . . . . . . . . 9 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → 𝑦𝑋)
21 f1fveq 7260 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2214, 19, 20, 21syl12anc 836 . . . . . . . 8 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2322necon3bid 2977 . . . . . . 7 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
2413, 23mpbird 257 . . . . . 6 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
256hausnei 23271 . . . . . 6 ((𝐾 ∈ Haus ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾 ∧ (𝐹𝑥) ≠ (𝐹𝑦))) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
263, 10, 12, 24, 25syl13anc 1374 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))
27 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾))
28 simprll 778 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑢𝐾)
29 cnima 23208 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → (𝐹𝑢) ∈ 𝐽)
3027, 28, 29syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑢) ∈ 𝐽)
31 simprlr 779 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑣𝐾)
32 cnima 23208 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣𝐾) → (𝐹𝑣) ∈ 𝐽)
3327, 31, 32syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑣) ∈ 𝐽)
349adantr 480 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 𝐽)
35 simprr1 1222 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑥) ∈ 𝑢)
368adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹: 𝐽 𝐾)
3736ffnd 6712 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝐹 Fn 𝐽)
38 elpreima 7053 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
3937, 38syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑥 ∈ (𝐹𝑢) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑢)))
4034, 35, 39mpbir2and 713 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑥 ∈ (𝐹𝑢))
4111adantr 480 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 𝐽)
42 simprr2 1223 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹𝑦) ∈ 𝑣)
43 elpreima 7053 . . . . . . . . . 10 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4437, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑦 ∈ (𝐹𝑣) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑣)))
4541, 42, 44mpbir2and 713 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → 𝑦 ∈ (𝐹𝑣))
46 ffun 6714 . . . . . . . . . 10 (𝐹: 𝐽 𝐾 → Fun 𝐹)
47 inpreima 7059 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
4836, 46, 473syl 18 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
49 simprr3 1224 . . . . . . . . . . 11 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝑢𝑣) = ∅)
5049imaeq2d 6052 . . . . . . . . . 10 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ ∅))
51 ima0 6069 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
5250, 51eqtrdi 2787 . . . . . . . . 9 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → (𝐹 “ (𝑢𝑣)) = ∅)
5348, 52eqtr3d 2773 . . . . . . . 8 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)
54 eleq2 2824 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → (𝑥𝑚𝑥 ∈ (𝐹𝑢)))
55 ineq1 4193 . . . . . . . . . . 11 (𝑚 = (𝐹𝑢) → (𝑚𝑛) = ((𝐹𝑢) ∩ 𝑛))
5655eqeq1d 2738 . . . . . . . . . 10 (𝑚 = (𝐹𝑢) → ((𝑚𝑛) = ∅ ↔ ((𝐹𝑢) ∩ 𝑛) = ∅))
5754, 563anbi13d 1440 . . . . . . . . 9 (𝑚 = (𝐹𝑢) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅)))
58 eleq2 2824 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (𝑦𝑛𝑦 ∈ (𝐹𝑣)))
59 ineq2 4194 . . . . . . . . . . 11 (𝑛 = (𝐹𝑣) → ((𝐹𝑢) ∩ 𝑛) = ((𝐹𝑢) ∩ (𝐹𝑣)))
6059eqeq1d 2738 . . . . . . . . . 10 (𝑛 = (𝐹𝑣) → (((𝐹𝑢) ∩ 𝑛) = ∅ ↔ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅))
6158, 603anbi23d 1441 . . . . . . . . 9 (𝑛 = (𝐹𝑣) → ((𝑥 ∈ (𝐹𝑢) ∧ 𝑦𝑛 ∧ ((𝐹𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)))
6257, 61rspc2ev 3619 . . . . . . . 8 (((𝐹𝑢) ∈ 𝐽 ∧ (𝐹𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (𝐹𝑢) ∧ 𝑦 ∈ (𝐹𝑣) ∧ ((𝐹𝑢) ∩ (𝐹𝑣)) = ∅)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6330, 33, 40, 45, 53, 62syl113anc 1384 . . . . . . 7 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ ((𝑢𝐾𝑣𝐾) ∧ ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅))) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6463expr 456 . . . . . 6 ((((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) ∧ (𝑢𝐾𝑣𝐾)) → (((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6564rexlimdvva 3202 . . . . 5 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → (∃𝑢𝐾𝑣𝐾 ((𝐹𝑥) ∈ 𝑢 ∧ (𝐹𝑦) ∈ 𝑣 ∧ (𝑢𝑣) = ∅) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6626, 65mpd 15 . . . 4 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 𝐽𝑦 𝐽) ∧ 𝑥𝑦)) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
6766expr 456 . . 3 (((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
6867ralrimivva 3188 . 2 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
695ishaus 23265 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
702, 68, 69sylanbrc 583 1 ((𝐾 ∈ Haus ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930  c0 4313   cuni 4888  ccnv 5658  dom cdm 5659  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  Topctop 22836   Cn ccn 23167  Hauscha 23251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-top 22837  df-topon 22854  df-cn 23170  df-haus 23258
This theorem is referenced by:  resthaus  23311  sshaus  23318  haushmph  23735
  Copyright terms: Public domain W3C validator