Step | Hyp | Ref
| Expression |
1 | | cntop1 22391 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
2 | 1 | 3ad2ant3 1134 |
. 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
3 | | simpl1 1190 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐾 ∈ Haus) |
4 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
5 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ 𝐾 |
7 | 5, 6 | cnf 22397 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
8 | 4, 7 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | | simprll 776 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ∪ 𝐽) |
10 | 8, 9 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ∪ 𝐾) |
11 | | simprlr 777 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ∪ 𝐽) |
12 | 8, 11 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑦) ∈ ∪ 𝐾) |
13 | | simprr 770 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
14 | | simpl2 1191 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝑋–1-1→𝑌) |
15 | 8 | fdmd 6611 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = ∪ 𝐽) |
16 | | f1dm 6674 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1→𝑌 → dom 𝐹 = 𝑋) |
17 | 14, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = 𝑋) |
18 | 15, 17 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∪ 𝐽 = 𝑋) |
19 | 9, 18 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑋) |
20 | 11, 18 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑋) |
21 | | f1fveq 7135 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
22 | 14, 19, 20, 21 | syl12anc 834 |
. . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
23 | 22 | necon3bid 2988 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ 𝑦)) |
24 | 13, 23 | mpbird 256 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
25 | 6 | hausnei 22479 |
. . . . . 6
⊢ ((𝐾 ∈ Haus ∧ ((𝐹‘𝑥) ∈ ∪ 𝐾 ∧ (𝐹‘𝑦) ∈ ∪ 𝐾 ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
26 | 3, 10, 12, 24, 25 | syl13anc 1371 |
. . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
27 | | simpll3 1213 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
28 | | simprll 776 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑢 ∈ 𝐾) |
29 | | cnima 22416 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ 𝐽) |
30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑢) ∈ 𝐽) |
31 | | simprlr 777 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑣 ∈ 𝐾) |
32 | | cnima 22416 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣 ∈ 𝐾) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
33 | 27, 31, 32 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
34 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ ∪ 𝐽) |
35 | | simprr1 1220 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑥) ∈ 𝑢) |
36 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
37 | 36 | ffnd 6601 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 Fn ∪ 𝐽) |
38 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) |
39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) |
40 | 34, 35, 39 | mpbir2and 710 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ (◡𝐹 “ 𝑢)) |
41 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ ∪ 𝐽) |
42 | | simprr2 1221 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑦) ∈ 𝑣) |
43 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) |
44 | 37, 43 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) |
45 | 41, 42, 44 | mpbir2and 710 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ (◡𝐹 “ 𝑣)) |
46 | | ffun 6603 |
. . . . . . . . . 10
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ Fun 𝐹) |
47 | | inpreima 6941 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
48 | 36, 46, 47 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
49 | | simprr3 1222 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 ∩ 𝑣) = ∅) |
50 | 49 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ ∅)) |
51 | | ima0 5985 |
. . . . . . . . . 10
⊢ (◡𝐹 “ ∅) = ∅ |
52 | 50, 51 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ∅) |
53 | 48, 52 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅) |
54 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑥 ∈ 𝑚 ↔ 𝑥 ∈ (◡𝐹 “ 𝑢))) |
55 | | ineq1 4139 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑚 ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ 𝑛)) |
56 | 55 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑚 ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅)) |
57 | 54, 56 | 3anbi13d 1437 |
. . . . . . . . 9
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅))) |
58 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (𝑦 ∈ 𝑛 ↔ 𝑦 ∈ (◡𝐹 “ 𝑣))) |
59 | | ineq2 4140 |
. . . . . . . . . . 11
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((◡𝐹 “ 𝑢) ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
60 | 59 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) |
61 | 58, 60 | 3anbi23d 1438 |
. . . . . . . . 9
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅))) |
62 | 57, 61 | rspc2ev 3572 |
. . . . . . . 8
⊢ (((◡𝐹 “ 𝑢) ∈ 𝐽 ∧ (◡𝐹 “ 𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
63 | 30, 33, 40, 45, 53, 62 | syl113anc 1381 |
. . . . . . 7
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
64 | 63 | expr 457 |
. . . . . 6
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾)) → (((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
65 | 64 | rexlimdvva 3223 |
. . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
66 | 26, 65 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
67 | 66 | expr 457 |
. . 3
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽)) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
68 | 67 | ralrimivva 3123 |
. 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
69 | 5 | ishaus 22473 |
. 2
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
70 | 2, 68, 69 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) |