MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus2 Structured version   Visualization version   GIF version

Theorem ishaus2 22115
Description: Express the predicate "𝐽 is a Hausdorff space." (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
ishaus2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑚,𝑛)

Proof of Theorem ishaus2
StepHypRef Expression
1 topontop 21677 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2739 . . . . 5 𝐽 = 𝐽
32ishaus 22086 . . . 4 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
43baib 539 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Haus ↔ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
6 toponuni 21678 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3317 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
86, 7raleqbidv 3305 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑥 𝐽𝑦 𝐽(𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
95, 8bitr4d 285 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  cin 3852  c0 4221   cuni 4806  cfv 6350  Topctop 21657  TopOnctopon 21674  Hauscha 22072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-iota 6308  df-fun 6352  df-fv 6358  df-topon 21675  df-haus 22079
This theorem is referenced by:  hausnei2  22117  ordthaus  22148  regr1lem2  22504  methaus  23286
  Copyright terms: Public domain W3C validator