Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw Structured version   Visualization version   GIF version

Theorem omllaw 39207
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))

Proof of Theorem omllaw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omllaw.b . . . . 5 𝐵 = (Base‘𝐾)
2 omllaw.l . . . . 5 = (le‘𝐾)
3 omllaw.j . . . . 5 = (join‘𝐾)
4 omllaw.m . . . . 5 = (meet‘𝐾)
5 omllaw.o . . . . 5 = (oc‘𝐾)
61, 2, 3, 4, 5isoml 39202 . . . 4 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
76simprbi 496 . . 3 (𝐾 ∈ OML → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
8 breq1 5122 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
10 fveq2 6875 . . . . . . . 8 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1110oveq2d 7419 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 ( 𝑥)) = (𝑦 ( 𝑋)))
129, 11oveq12d 7421 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 ( 𝑥))) = (𝑋 (𝑦 ( 𝑋))))
1312eqeq2d 2746 . . . . 5 (𝑥 = 𝑋 → (𝑦 = (𝑥 (𝑦 ( 𝑥))) ↔ 𝑦 = (𝑋 (𝑦 ( 𝑋)))))
148, 13imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) ↔ (𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋))))))
15 breq2 5123 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
16 id 22 . . . . . 6 (𝑦 = 𝑌𝑦 = 𝑌)
17 oveq1 7410 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ( 𝑋)) = (𝑌 ( 𝑋)))
1817oveq2d 7419 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 ( 𝑋))) = (𝑋 (𝑌 ( 𝑋))))
1916, 18eqeq12d 2751 . . . . 5 (𝑦 = 𝑌 → (𝑦 = (𝑋 (𝑦 ( 𝑋))) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
2015, 19imbi12d 344 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋)))) ↔ (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
2114, 20rspc2v 3612 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
227, 21syl5com 31 . 2 (𝐾 ∈ OML → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
23223impib 1116 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  occoc 17277  joincjn 18321  meetcmee 18322  OLcol 39138  OMLcoml 39139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-oml 39143
This theorem is referenced by:  omllaw2N  39208  omllaw3  39209  omllaw4  39210
  Copyright terms: Public domain W3C validator