Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw Structured version   Visualization version   GIF version

Theorem omllaw 39244
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))

Proof of Theorem omllaw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omllaw.b . . . . 5 𝐵 = (Base‘𝐾)
2 omllaw.l . . . . 5 = (le‘𝐾)
3 omllaw.j . . . . 5 = (join‘𝐾)
4 omllaw.m . . . . 5 = (meet‘𝐾)
5 omllaw.o . . . . 5 = (oc‘𝐾)
61, 2, 3, 4, 5isoml 39239 . . . 4 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
76simprbi 496 . . 3 (𝐾 ∈ OML → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
8 breq1 5146 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
10 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1110oveq2d 7447 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 ( 𝑥)) = (𝑦 ( 𝑋)))
129, 11oveq12d 7449 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 ( 𝑥))) = (𝑋 (𝑦 ( 𝑋))))
1312eqeq2d 2748 . . . . 5 (𝑥 = 𝑋 → (𝑦 = (𝑥 (𝑦 ( 𝑥))) ↔ 𝑦 = (𝑋 (𝑦 ( 𝑋)))))
148, 13imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) ↔ (𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋))))))
15 breq2 5147 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
16 id 22 . . . . . 6 (𝑦 = 𝑌𝑦 = 𝑌)
17 oveq1 7438 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ( 𝑋)) = (𝑌 ( 𝑋)))
1817oveq2d 7447 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 ( 𝑋))) = (𝑋 (𝑌 ( 𝑋))))
1916, 18eqeq12d 2753 . . . . 5 (𝑦 = 𝑌 → (𝑦 = (𝑋 (𝑦 ( 𝑋))) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
2015, 19imbi12d 344 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋)))) ↔ (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
2114, 20rspc2v 3633 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
227, 21syl5com 31 . 2 (𝐾 ∈ OML → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
23223impib 1117 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  occoc 17305  joincjn 18357  meetcmee 18358  OLcol 39175  OMLcoml 39176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-oml 39180
This theorem is referenced by:  omllaw2N  39245  omllaw3  39246  omllaw4  39247
  Copyright terms: Public domain W3C validator