Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw Structured version   Visualization version   GIF version

Theorem omllaw 39221
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))

Proof of Theorem omllaw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omllaw.b . . . . 5 𝐵 = (Base‘𝐾)
2 omllaw.l . . . . 5 = (le‘𝐾)
3 omllaw.j . . . . 5 = (join‘𝐾)
4 omllaw.m . . . . 5 = (meet‘𝐾)
5 omllaw.o . . . . 5 = (oc‘𝐾)
61, 2, 3, 4, 5isoml 39216 . . . 4 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
76simprbi 496 . . 3 (𝐾 ∈ OML → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
8 breq1 5098 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
10 fveq2 6826 . . . . . . . 8 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1110oveq2d 7369 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 ( 𝑥)) = (𝑦 ( 𝑋)))
129, 11oveq12d 7371 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 ( 𝑥))) = (𝑋 (𝑦 ( 𝑋))))
1312eqeq2d 2740 . . . . 5 (𝑥 = 𝑋 → (𝑦 = (𝑥 (𝑦 ( 𝑥))) ↔ 𝑦 = (𝑋 (𝑦 ( 𝑋)))))
148, 13imbi12d 344 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) ↔ (𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋))))))
15 breq2 5099 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
16 id 22 . . . . . 6 (𝑦 = 𝑌𝑦 = 𝑌)
17 oveq1 7360 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ( 𝑋)) = (𝑌 ( 𝑋)))
1817oveq2d 7369 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 ( 𝑋))) = (𝑋 (𝑌 ( 𝑋))))
1916, 18eqeq12d 2745 . . . . 5 (𝑦 = 𝑌 → (𝑦 = (𝑋 (𝑦 ( 𝑋))) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
2015, 19imbi12d 344 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋)))) ↔ (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
2114, 20rspc2v 3590 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
227, 21syl5com 31 . 2 (𝐾 ∈ OML → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
23223impib 1116 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  occoc 17187  joincjn 18235  meetcmee 18236  OLcol 39152  OMLcoml 39153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-oml 39157
This theorem is referenced by:  omllaw2N  39222  omllaw3  39223  omllaw4  39224
  Copyright terms: Public domain W3C validator