| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7448 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7449 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: csbov123 7475 prdsplusgfval 17519 prdsmulrfval 17521 prdsvscafval 17525 prdsdsval2 17529 xpsaddlem 17618 xpsvsca 17622 iscat 17715 iscatd 17716 iscatd2 17724 catcocl 17728 catass 17729 moni 17780 rcaninv 17838 subccocl 17890 isfunc 17909 funcco 17916 idfucl 17926 cofuval 17927 cofuval2 17932 cofucl 17933 funcres 17941 ressffth 17985 isnat 17995 nati 18003 fuccoval 18011 coaval 18113 catcisolem 18155 xpcco 18228 xpcco2 18232 1stfcl 18242 2ndfcl 18243 prfcl 18248 evlf2 18263 evlfcllem 18266 evlfcl 18267 curfval 18268 curf1 18270 curf12 18272 curf1cl 18273 curf2 18274 curf2val 18275 curf2cl 18276 curfcl 18277 uncfcurf 18284 hofval 18297 hof2fval 18300 hofcl 18304 yonedalem4a 18320 yonedalem3 18325 yonedainv 18326 isdlat 18567 issgrp 18733 issgrpd 18743 ismndd 18769 grpsubfval 19001 grpsubfvalALT 19002 grpsubpropd 19063 imasgrp 19074 subgsub 19156 eqgfval 19194 dpjfval 20075 isrng 20151 isrngd 20170 issrg 20185 isring 20234 isringd 20288 dvrfval 20402 isdrngd 20765 isdrngdOLD 20767 issrngd 20856 islmodd 20864 rnglidlmsgrp 21256 rnglidlrng 21257 rngqiprngimf1lem 21304 isphld 21672 phlssphl 21677 pjfval 21726 islindf 21832 isassa 21876 isassad 21885 asclfval 21899 ressascl 21916 psrval 21935 psdffval 22161 coe1tm 22276 evl1varpw 22365 evls1maplmhm 22381 scmatval 22510 mdetfval 22592 smadiadetr 22681 pmatcollpw2lem 22783 pm2mpval 22801 pm2mpghm 22822 chpmatfval 22836 cpmadugsumlemB 22880 xkohmeo 23823 xpsdsval 24391 prdsxmslem2 24542 nmfval 24601 nmpropd 24607 nmpropd2 24608 subgnm 24646 tngnm 24672 cph2di 25241 cphassr 25246 ipcau2 25268 tcphcphlem2 25270 rrxplusgvscavalb 25429 q1pval 26194 r1pval 26197 dvntaylp 26413 israg 28705 ttgval 28883 ttgvalOLD 28884 grpodivfval 30553 dipfval 30721 lnoval 30771 ressnm 32949 isslmd 33208 erlval 33262 rlocval 33263 idlinsubrg 33459 zringfrac 33582 fedgmullem2 33681 qqhval 33973 sitgval 34334 rdgeqoa 37371 prdsbnd2 37802 isrngo 37904 lflset 39060 islfld 39063 ldualset 39126 cmtfvalN 39211 isoml 39239 ltrnfset 40119 trlfset 40162 docaffvalN 41123 diblss 41172 dihffval 41232 dihfval 41233 hvmapffval 41760 hvmapfval 41761 hgmapfval 41888 isprimroot 42094 primrootsunit1 42098 aks6d1c1p4 42112 aks5lem3a 42190 imacrhmcl 42524 mendval 43191 hoidmvlelem3 46612 hspmbllem2 46642 isasslaw 48108 zlmodzxzscm 48273 lcoop 48328 lincvalsng 48333 lincvalpr 48335 lincdifsn 48341 islininds 48363 lines 48652 upciclem1 48923 upfval2 48934 upfval3 48935 isuplem 48936 swapfcoa 48987 tposcurf2val 49001 fuco21 49031 fuco23 49036 fuco22natlem3 49039 fucoid 49043 fucocolem2 49049 fucocolem4 49051 oppcthinendcALT 49090 mndtchom 49181 mndtcco 49182 mndtccatid 49184 |
| Copyright terms: Public domain | W3C validator |