| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7405 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: csbov123 7431 prdsplusgfval 17437 prdsmulrfval 17439 prdsvscafval 17443 prdsdsval2 17447 xpsaddlem 17536 xpsvsca 17540 iscat 17633 iscatd 17634 iscatd2 17642 catcocl 17646 catass 17647 moni 17698 rcaninv 17756 subccocl 17807 isfunc 17826 funcco 17833 idfucl 17843 cofuval 17844 cofuval2 17849 cofucl 17850 funcres 17858 ressffth 17902 isnat 17912 nati 17920 fuccoval 17928 coaval 18030 catcisolem 18072 xpcco 18144 xpcco2 18148 1stfcl 18158 2ndfcl 18159 prfcl 18164 evlf2 18179 evlfcllem 18182 evlfcl 18183 curfval 18184 curf1 18186 curf12 18188 curf1cl 18189 curf2 18190 curf2val 18191 curf2cl 18192 curfcl 18193 uncfcurf 18200 hofval 18213 hof2fval 18216 hofcl 18220 yonedalem4a 18236 yonedalem3 18241 yonedainv 18242 isdlat 18481 issgrp 18647 issgrpd 18657 ismndd 18683 grpsubfval 18915 grpsubfvalALT 18916 grpsubpropd 18977 imasgrp 18988 subgsub 19070 eqgfval 19108 dpjfval 19987 isrng 20063 isrngd 20082 issrg 20097 isring 20146 isringd 20200 dvrfval 20311 isdrngd 20674 isdrngdOLD 20676 issrngd 20764 islmodd 20772 rnglidlmsgrp 21156 rnglidlrng 21157 rngqiprngimf1lem 21204 isphld 21563 phlssphl 21568 pjfval 21615 islindf 21721 isassa 21765 isassad 21774 asclfval 21788 ressascl 21805 psrval 21824 psdffval 22044 coe1tm 22159 evl1varpw 22248 evls1maplmhm 22264 scmatval 22391 mdetfval 22473 smadiadetr 22562 pmatcollpw2lem 22664 pm2mpval 22682 pm2mpghm 22703 chpmatfval 22717 cpmadugsumlemB 22761 xkohmeo 23702 xpsdsval 24269 prdsxmslem2 24417 nmfval 24476 nmpropd 24482 nmpropd2 24483 subgnm 24521 tngnm 24539 cph2di 25107 cphassr 25112 ipcau2 25134 tcphcphlem2 25136 rrxplusgvscavalb 25295 q1pval 26060 r1pval 26063 dvntaylp 26279 israg 28624 ttgval 28802 grpodivfval 30463 dipfval 30631 lnoval 30681 ressnm 32886 isslmd 33155 erlval 33209 rlocval 33210 idlinsubrg 33402 zringfrac 33525 fedgmullem2 33626 qqhval 33962 sitgval 34323 rdgeqoa 37358 prdsbnd2 37789 isrngo 37891 lflset 39052 islfld 39055 ldualset 39118 cmtfvalN 39203 isoml 39231 ltrnfset 40111 trlfset 40154 docaffvalN 41115 diblss 41164 dihffval 41224 dihfval 41225 hvmapffval 41752 hvmapfval 41753 hgmapfval 41880 isprimroot 42081 primrootsunit1 42085 aks6d1c1p4 42099 aks5lem3a 42177 imacrhmcl 42502 mendval 43168 hoidmvlelem3 46595 hspmbllem2 46625 isasslaw 48180 zlmodzxzscm 48345 lcoop 48400 lincvalsng 48405 lincvalpr 48407 lincdifsn 48413 islininds 48435 lines 48720 discsubc 49053 cofu2a 49084 cofid2 49104 cofidf2 49109 imaf1co 49144 upciclem1 49155 upfval2 49166 upfval3 49167 isuplem 49168 oppcup3lem 49195 uptrlem1 49199 uptr2 49210 swapfcoa 49270 tposcurf2val 49290 fuco21 49325 fuco23 49330 fuco22natlem3 49333 fucoid 49337 fucocolem2 49343 fucocolem4 49345 oppfdiag 49405 oppcthinendcALT 49430 isinito2lem 49487 dfinito4 49490 mndtchom 49573 mndtcco 49574 mndtccatid 49576 2arwcat 49589 setc1onsubc 49591 lanfval 49602 ranfval 49603 lanpropd 49604 ranpropd 49605 lanup 49630 ranup 49631 lmdfval 49638 cmdfval 49639 lmdpropd 49646 cmdpropd 49647 concom 49652 coccom 49653 islmd 49654 iscmd 49655 cmddu 49657 |
| Copyright terms: Public domain | W3C validator |