Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7301 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 7302 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2779 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 |
This theorem is referenced by: csbov123 7326 prdsplusgfval 17194 prdsmulrfval 17196 prdsvscafval 17200 prdsdsval2 17204 xpsaddlem 17293 xpsvsca 17297 iscat 17390 iscatd 17391 iscatd2 17399 catcocl 17403 catass 17404 moni 17457 rcaninv 17515 subccocl 17569 isfunc 17588 funcco 17595 idfucl 17605 cofuval 17606 cofuval2 17611 cofucl 17612 funcres 17620 ressffth 17663 isnat 17672 nati 17680 fuccoval 17690 coaval 17792 catcisolem 17834 xpcco 17909 xpcco2 17913 1stfcl 17923 2ndfcl 17924 prfcl 17929 evlf2 17945 evlfcllem 17948 evlfcl 17949 curfval 17950 curf1 17952 curf12 17954 curf1cl 17955 curf2 17956 curf2val 17957 curf2cl 17958 curfcl 17959 uncfcurf 17966 hofval 17979 hof2fval 17982 hofcl 17986 yonedalem4a 18002 yonedalem3 18007 yonedainv 18008 isdlat 18249 issgrp 18385 ismndd 18416 grpsubfval 18632 grpsubfvalALT 18633 grpsubpropd 18689 imasgrp 18700 subgsub 18776 eqgfval 18813 dpjfval 19667 issrg 19752 isring 19796 isringd 19833 dvrfval 19935 isdrngd 20025 issrngd 20130 islmodd 20138 isphld 20868 phlssphl 20873 pjfval 20922 islindf 21028 isassa 21072 isassad 21080 asclfval 21092 ressascl 21109 psrval 21127 coe1tm 21453 evl1varpw 21536 scmatval 21662 mdetfval 21744 smadiadetr 21833 pmatcollpw2lem 21935 pm2mpval 21953 pm2mpghm 21974 chpmatfval 21988 cpmadugsumlemB 22032 xkohmeo 22975 xpsdsval 23543 prdsxmslem2 23694 nmfval 23753 nmpropd 23759 nmpropd2 23760 subgnm 23798 tngnm 23824 cph2di 24380 cphassr 24385 ipcau2 24407 tcphcphlem2 24409 rrxplusgvscavalb 24568 q1pval 25327 r1pval 25330 dvntaylp 25539 israg 27067 ttgval 27245 ttgvalOLD 27246 grpodivfval 28905 dipfval 29073 lnoval 29123 ressnm 31245 isslmd 31464 idlinsubrg 31617 fedgmullem2 31720 qqhval 31933 sitgval 32308 rdgeqoa 35550 prdsbnd2 35962 isrngo 36064 lflset 37080 islfld 37083 ldualset 37146 cmtfvalN 37231 isoml 37259 ltrnfset 38138 trlfset 38181 docaffvalN 39142 diblss 39191 dihffval 39251 dihfval 39252 hvmapffval 39779 hvmapfval 39780 hgmapfval 39907 mendval 41015 hoidmvlelem3 44142 hspmbllem2 44172 isasslaw 45397 isrng 45445 lidlmsgrp 45495 lidlrng 45496 zlmodzxzscm 45704 lcoop 45763 lincvalsng 45768 lincvalpr 45770 lincdifsn 45776 islininds 45798 lines 46088 mndtchom 46382 mndtcco 46383 mndtccatid 46385 |
Copyright terms: Public domain | W3C validator |