![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7465 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 7466 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: csbov123 7492 prdsplusgfval 17534 prdsmulrfval 17536 prdsvscafval 17540 prdsdsval2 17544 xpsaddlem 17633 xpsvsca 17637 iscat 17730 iscatd 17731 iscatd2 17739 catcocl 17743 catass 17744 moni 17797 rcaninv 17855 subccocl 17909 isfunc 17928 funcco 17935 idfucl 17945 cofuval 17946 cofuval2 17951 cofucl 17952 funcres 17960 ressffth 18005 isnat 18015 nati 18023 fuccoval 18033 coaval 18135 catcisolem 18177 xpcco 18252 xpcco2 18256 1stfcl 18266 2ndfcl 18267 prfcl 18272 evlf2 18288 evlfcllem 18291 evlfcl 18292 curfval 18293 curf1 18295 curf12 18297 curf1cl 18298 curf2 18299 curf2val 18300 curf2cl 18301 curfcl 18302 uncfcurf 18309 hofval 18322 hof2fval 18325 hofcl 18329 yonedalem4a 18345 yonedalem3 18350 yonedainv 18351 isdlat 18592 issgrp 18758 issgrpd 18768 ismndd 18794 grpsubfval 19023 grpsubfvalALT 19024 grpsubpropd 19085 imasgrp 19096 subgsub 19178 eqgfval 19216 dpjfval 20099 isrng 20181 isrngd 20200 issrg 20215 isring 20264 isringd 20314 dvrfval 20428 isdrngd 20787 isdrngdOLD 20789 issrngd 20878 islmodd 20886 rnglidlmsgrp 21279 rnglidlrng 21280 rngqiprngimf1lem 21327 isphld 21695 phlssphl 21700 pjfval 21749 islindf 21855 isassa 21899 isassad 21908 asclfval 21922 ressascl 21939 psrval 21958 psdffval 22184 coe1tm 22297 evl1varpw 22386 evls1maplmhm 22402 scmatval 22531 mdetfval 22613 smadiadetr 22702 pmatcollpw2lem 22804 pm2mpval 22822 pm2mpghm 22843 chpmatfval 22857 cpmadugsumlemB 22901 xkohmeo 23844 xpsdsval 24412 prdsxmslem2 24563 nmfval 24622 nmpropd 24628 nmpropd2 24629 subgnm 24667 tngnm 24693 cph2di 25260 cphassr 25265 ipcau2 25287 tcphcphlem2 25289 rrxplusgvscavalb 25448 q1pval 26214 r1pval 26217 dvntaylp 26431 israg 28723 ttgval 28901 ttgvalOLD 28902 grpodivfval 30566 dipfval 30734 lnoval 30784 ressnm 32931 isslmd 33181 erlval 33230 rlocval 33231 idlinsubrg 33424 zringfrac 33547 fedgmullem2 33643 qqhval 33920 sitgval 34297 rdgeqoa 37336 prdsbnd2 37755 isrngo 37857 lflset 39015 islfld 39018 ldualset 39081 cmtfvalN 39166 isoml 39194 ltrnfset 40074 trlfset 40117 docaffvalN 41078 diblss 41127 dihffval 41187 dihfval 41188 hvmapffval 41715 hvmapfval 41716 hgmapfval 41843 isprimroot 42050 primrootsunit1 42054 aks6d1c1p4 42068 aks5lem3a 42146 imacrhmcl 42469 mendval 43140 hoidmvlelem3 46518 hspmbllem2 46548 isasslaw 47915 zlmodzxzscm 48082 lcoop 48140 lincvalsng 48145 lincvalpr 48147 lincdifsn 48153 islininds 48175 lines 48465 mndtchom 48757 mndtcco 48758 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |