| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7366 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7367 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: csbov123 7393 prdsplusgfval 17378 prdsmulrfval 17380 prdsvscafval 17384 prdsdsval2 17388 xpsaddlem 17477 xpsvsca 17481 iscat 17578 iscatd 17579 iscatd2 17587 catcocl 17591 catass 17592 moni 17643 rcaninv 17701 subccocl 17752 isfunc 17771 funcco 17778 idfucl 17788 cofuval 17789 cofuval2 17794 cofucl 17795 funcres 17803 ressffth 17847 isnat 17857 nati 17865 fuccoval 17873 coaval 17975 catcisolem 18017 xpcco 18089 xpcco2 18093 1stfcl 18103 2ndfcl 18104 prfcl 18109 evlf2 18124 evlfcllem 18127 evlfcl 18128 curfval 18129 curf1 18131 curf12 18133 curf1cl 18134 curf2 18135 curf2val 18136 curf2cl 18137 curfcl 18138 uncfcurf 18145 hofval 18158 hof2fval 18161 hofcl 18165 yonedalem4a 18181 yonedalem3 18186 yonedainv 18187 isdlat 18428 issgrp 18594 issgrpd 18604 ismndd 18630 grpsubfval 18862 grpsubfvalALT 18863 grpsubpropd 18924 imasgrp 18935 subgsub 19017 eqgfval 19055 dpjfval 19936 isrng 20039 isrngd 20058 issrg 20073 isring 20122 isringd 20176 dvrfval 20287 isdrngd 20650 isdrngdOLD 20652 issrngd 20740 islmodd 20769 rnglidlmsgrp 21153 rnglidlrng 21154 rngqiprngimf1lem 21201 isphld 21561 phlssphl 21566 pjfval 21613 islindf 21719 isassa 21763 isassad 21772 asclfval 21786 ressascl 21803 psrval 21822 psdffval 22042 coe1tm 22157 evl1varpw 22246 evls1maplmhm 22262 scmatval 22389 mdetfval 22471 smadiadetr 22560 pmatcollpw2lem 22662 pm2mpval 22680 pm2mpghm 22701 chpmatfval 22715 cpmadugsumlemB 22759 xkohmeo 23700 xpsdsval 24267 prdsxmslem2 24415 nmfval 24474 nmpropd 24480 nmpropd2 24481 subgnm 24519 tngnm 24537 cph2di 25105 cphassr 25110 ipcau2 25132 tcphcphlem2 25134 rrxplusgvscavalb 25293 q1pval 26058 r1pval 26061 dvntaylp 26277 israg 28642 ttgval 28820 grpodivfval 30478 dipfval 30646 lnoval 30696 ressnm 32906 isslmd 33144 erlval 33198 rlocval 33199 idlinsubrg 33368 zringfrac 33491 fedgmullem2 33597 qqhval 33939 sitgval 34300 rdgeqoa 37348 prdsbnd2 37779 isrngo 37881 lflset 39042 islfld 39045 ldualset 39108 cmtfvalN 39193 isoml 39221 ltrnfset 40100 trlfset 40143 docaffvalN 41104 diblss 41153 dihffval 41213 dihfval 41214 hvmapffval 41741 hvmapfval 41742 hgmapfval 41869 isprimroot 42070 primrootsunit1 42074 aks6d1c1p4 42088 aks5lem3a 42166 imacrhmcl 42491 mendval 43156 hoidmvlelem3 46582 hspmbllem2 46612 isasslaw 48180 zlmodzxzscm 48345 lcoop 48400 lincvalsng 48405 lincvalpr 48407 lincdifsn 48413 islininds 48435 lines 48720 discsubc 49053 cofu2a 49084 cofid2 49104 cofidf2 49109 imaf1co 49144 upciclem1 49155 upfval2 49166 upfval3 49167 isuplem 49168 oppcup3lem 49195 uptrlem1 49199 uptr2 49210 swapfcoa 49270 tposcurf2val 49290 fuco21 49325 fuco23 49330 fuco22natlem3 49333 fucoid 49337 fucocolem2 49343 fucocolem4 49345 oppfdiag 49405 oppcthinendcALT 49430 isinito2lem 49487 dfinito4 49490 mndtchom 49573 mndtcco 49574 mndtccatid 49576 2arwcat 49589 setc1onsubc 49591 lanfval 49602 ranfval 49603 lanpropd 49604 ranpropd 49605 lanup 49630 ranup 49631 lmdfval 49638 cmdfval 49639 lmdpropd 49646 cmdpropd 49647 concom 49652 coccom 49653 islmd 49654 iscmd 49655 cmddu 49657 |
| Copyright terms: Public domain | W3C validator |