| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7420 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7421 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: csbov123 7447 prdsplusgfval 17486 prdsmulrfval 17488 prdsvscafval 17492 prdsdsval2 17496 xpsaddlem 17585 xpsvsca 17589 iscat 17682 iscatd 17683 iscatd2 17691 catcocl 17695 catass 17696 moni 17747 rcaninv 17805 subccocl 17856 isfunc 17875 funcco 17882 idfucl 17892 cofuval 17893 cofuval2 17898 cofucl 17899 funcres 17907 ressffth 17951 isnat 17961 nati 17969 fuccoval 17977 coaval 18079 catcisolem 18121 xpcco 18193 xpcco2 18197 1stfcl 18207 2ndfcl 18208 prfcl 18213 evlf2 18228 evlfcllem 18231 evlfcl 18232 curfval 18233 curf1 18235 curf12 18237 curf1cl 18238 curf2 18239 curf2val 18240 curf2cl 18241 curfcl 18242 uncfcurf 18249 hofval 18262 hof2fval 18265 hofcl 18269 yonedalem4a 18285 yonedalem3 18290 yonedainv 18291 isdlat 18530 issgrp 18696 issgrpd 18706 ismndd 18732 grpsubfval 18964 grpsubfvalALT 18965 grpsubpropd 19026 imasgrp 19037 subgsub 19119 eqgfval 19157 dpjfval 20036 isrng 20112 isrngd 20131 issrg 20146 isring 20195 isringd 20249 dvrfval 20360 isdrngd 20723 isdrngdOLD 20725 issrngd 20813 islmodd 20821 rnglidlmsgrp 21205 rnglidlrng 21206 rngqiprngimf1lem 21253 isphld 21612 phlssphl 21617 pjfval 21664 islindf 21770 isassa 21814 isassad 21823 asclfval 21837 ressascl 21854 psrval 21873 psdffval 22093 coe1tm 22208 evl1varpw 22297 evls1maplmhm 22313 scmatval 22440 mdetfval 22522 smadiadetr 22611 pmatcollpw2lem 22713 pm2mpval 22731 pm2mpghm 22752 chpmatfval 22766 cpmadugsumlemB 22810 xkohmeo 23751 xpsdsval 24318 prdsxmslem2 24466 nmfval 24525 nmpropd 24531 nmpropd2 24532 subgnm 24570 tngnm 24588 cph2di 25157 cphassr 25162 ipcau2 25184 tcphcphlem2 25186 rrxplusgvscavalb 25345 q1pval 26110 r1pval 26113 dvntaylp 26329 israg 28622 ttgval 28800 grpodivfval 30461 dipfval 30629 lnoval 30679 ressnm 32886 isslmd 33145 erlval 33199 rlocval 33200 idlinsubrg 33392 zringfrac 33515 fedgmullem2 33616 qqhval 33949 sitgval 34310 rdgeqoa 37334 prdsbnd2 37765 isrngo 37867 lflset 39023 islfld 39026 ldualset 39089 cmtfvalN 39174 isoml 39202 ltrnfset 40082 trlfset 40125 docaffvalN 41086 diblss 41135 dihffval 41195 dihfval 41196 hvmapffval 41723 hvmapfval 41724 hgmapfval 41851 isprimroot 42052 primrootsunit1 42056 aks6d1c1p4 42070 aks5lem3a 42148 imacrhmcl 42484 mendval 43150 hoidmvlelem3 46574 hspmbllem2 46604 isasslaw 48115 zlmodzxzscm 48280 lcoop 48335 lincvalsng 48340 lincvalpr 48342 lincdifsn 48348 islininds 48370 lines 48659 discsubc 48979 imaf1co 49043 upciclem1 49049 upfval2 49060 upfval3 49061 isuplem 49062 oppcup3lem 49087 swapfcoa 49146 tposcurf2val 49160 fuco21 49195 fuco23 49200 fuco22natlem3 49203 fucoid 49207 fucocolem2 49213 fucocolem4 49215 oppcthinendcALT 49275 isinito2lem 49331 dfinito4 49334 mndtchom 49409 mndtcco 49410 mndtccatid 49412 2arwcat 49425 setc1onsubc 49427 lanfval 49438 ranfval 49439 lanup 49463 ranup 49464 lmdfval 49471 cmdfval 49472 concom 49481 coccom 49482 islmd 49483 iscmd 49484 |
| Copyright terms: Public domain | W3C validator |