Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7173 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 7174 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2793 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 (class class class)co 7156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 |
This theorem is referenced by: csbov123 7198 prdsplusgfval 16818 prdsmulrfval 16820 prdsvscafval 16824 prdsdsval2 16828 xpsaddlem 16917 xpsvsca 16921 iscat 17014 iscatd 17015 iscatd2 17023 catcocl 17027 catass 17028 moni 17078 rcaninv 17136 subccocl 17187 isfunc 17206 funcco 17213 idfucl 17223 cofuval 17224 cofuval2 17229 cofucl 17230 funcres 17238 ressffth 17280 isnat 17289 nati 17297 fuccoval 17305 coaval 17407 catcisolem 17445 xpcco 17512 xpcco2 17516 1stfcl 17526 2ndfcl 17527 prfcl 17532 evlf2 17547 evlfcllem 17550 evlfcl 17551 curfval 17552 curf1 17554 curf12 17556 curf1cl 17557 curf2 17558 curf2val 17559 curf2cl 17560 curfcl 17561 uncfcurf 17568 hofval 17581 hof2fval 17584 hofcl 17588 yonedalem4a 17604 yonedalem3 17609 yonedainv 17610 isdlat 17882 issgrp 17981 ismndd 18012 grpsubfval 18227 grpsubfvalALT 18228 grpsubpropd 18284 imasgrp 18295 subgsub 18371 eqgfval 18408 dpjfval 19258 issrg 19338 isring 19382 isringd 19419 dvrfval 19518 isdrngd 19608 issrngd 19713 islmodd 19721 isphld 20432 phlssphl 20437 pjfval 20484 islindf 20590 isassa 20634 isassad 20642 asclfval 20654 ressascl 20672 psrval 20690 coe1tm 21010 evl1varpw 21093 scmatval 21217 mdetfval 21299 smadiadetr 21388 pmatcollpw2lem 21490 pm2mpval 21508 pm2mpghm 21529 chpmatfval 21543 cpmadugsumlemB 21587 xkohmeo 22528 xpsdsval 23096 prdsxmslem2 23244 nmfval 23303 nmpropd 23309 nmpropd2 23310 subgnm 23348 tngnm 23366 cph2di 23921 cphassr 23926 ipcau2 23947 tcphcphlem2 23949 rrxplusgvscavalb 24108 q1pval 24866 r1pval 24869 dvntaylp 25078 israg 26603 ttgval 26781 grpodivfval 28429 dipfval 28597 lnoval 28647 ressnm 30772 isslmd 30993 idlinsubrg 31141 fedgmullem2 31244 qqhval 31455 sitgval 31830 rdgeqoa 35101 prdsbnd2 35547 isrngo 35649 lflset 36669 islfld 36672 ldualset 36735 cmtfvalN 36820 isoml 36848 ltrnfset 37727 trlfset 37770 docaffvalN 38731 diblss 38780 dihffval 38840 dihfval 38841 hvmapffval 39368 hvmapfval 39369 hgmapfval 39496 mendval 40535 hoidmvlelem3 43637 hspmbllem2 43667 isasslaw 44868 isrng 44916 lidlmsgrp 44966 lidlrng 44967 zlmodzxzscm 45175 lcoop 45234 lincvalsng 45239 lincvalpr 45241 lincdifsn 45247 islininds 45269 lines 45559 |
Copyright terms: Public domain | W3C validator |