| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7408 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: csbov123 7434 prdsplusgfval 17444 prdsmulrfval 17446 prdsvscafval 17450 prdsdsval2 17454 xpsaddlem 17543 xpsvsca 17547 iscat 17640 iscatd 17641 iscatd2 17649 catcocl 17653 catass 17654 moni 17705 rcaninv 17763 subccocl 17814 isfunc 17833 funcco 17840 idfucl 17850 cofuval 17851 cofuval2 17856 cofucl 17857 funcres 17865 ressffth 17909 isnat 17919 nati 17927 fuccoval 17935 coaval 18037 catcisolem 18079 xpcco 18151 xpcco2 18155 1stfcl 18165 2ndfcl 18166 prfcl 18171 evlf2 18186 evlfcllem 18189 evlfcl 18190 curfval 18191 curf1 18193 curf12 18195 curf1cl 18196 curf2 18197 curf2val 18198 curf2cl 18199 curfcl 18200 uncfcurf 18207 hofval 18220 hof2fval 18223 hofcl 18227 yonedalem4a 18243 yonedalem3 18248 yonedainv 18249 isdlat 18488 issgrp 18654 issgrpd 18664 ismndd 18690 grpsubfval 18922 grpsubfvalALT 18923 grpsubpropd 18984 imasgrp 18995 subgsub 19077 eqgfval 19115 dpjfval 19994 isrng 20070 isrngd 20089 issrg 20104 isring 20153 isringd 20207 dvrfval 20318 isdrngd 20681 isdrngdOLD 20683 issrngd 20771 islmodd 20779 rnglidlmsgrp 21163 rnglidlrng 21164 rngqiprngimf1lem 21211 isphld 21570 phlssphl 21575 pjfval 21622 islindf 21728 isassa 21772 isassad 21781 asclfval 21795 ressascl 21812 psrval 21831 psdffval 22051 coe1tm 22166 evl1varpw 22255 evls1maplmhm 22271 scmatval 22398 mdetfval 22480 smadiadetr 22569 pmatcollpw2lem 22671 pm2mpval 22689 pm2mpghm 22710 chpmatfval 22724 cpmadugsumlemB 22768 xkohmeo 23709 xpsdsval 24276 prdsxmslem2 24424 nmfval 24483 nmpropd 24489 nmpropd2 24490 subgnm 24528 tngnm 24546 cph2di 25114 cphassr 25119 ipcau2 25141 tcphcphlem2 25143 rrxplusgvscavalb 25302 q1pval 26067 r1pval 26070 dvntaylp 26286 israg 28631 ttgval 28809 grpodivfval 30470 dipfval 30638 lnoval 30688 ressnm 32893 isslmd 33162 erlval 33216 rlocval 33217 idlinsubrg 33409 zringfrac 33532 fedgmullem2 33633 qqhval 33969 sitgval 34330 rdgeqoa 37365 prdsbnd2 37796 isrngo 37898 lflset 39059 islfld 39062 ldualset 39125 cmtfvalN 39210 isoml 39238 ltrnfset 40118 trlfset 40161 docaffvalN 41122 diblss 41171 dihffval 41231 dihfval 41232 hvmapffval 41759 hvmapfval 41760 hgmapfval 41887 isprimroot 42088 primrootsunit1 42092 aks6d1c1p4 42106 aks5lem3a 42184 imacrhmcl 42509 mendval 43175 hoidmvlelem3 46602 hspmbllem2 46632 isasslaw 48184 zlmodzxzscm 48349 lcoop 48404 lincvalsng 48409 lincvalpr 48411 lincdifsn 48417 islininds 48439 lines 48724 discsubc 49057 cofu2a 49088 cofid2 49108 cofidf2 49113 imaf1co 49148 upciclem1 49159 upfval2 49170 upfval3 49171 isuplem 49172 oppcup3lem 49199 uptrlem1 49203 uptr2 49214 swapfcoa 49274 tposcurf2val 49294 fuco21 49329 fuco23 49334 fuco22natlem3 49337 fucoid 49341 fucocolem2 49347 fucocolem4 49349 oppfdiag 49409 oppcthinendcALT 49434 isinito2lem 49491 dfinito4 49494 mndtchom 49577 mndtcco 49578 mndtccatid 49580 2arwcat 49593 setc1onsubc 49595 lanfval 49606 ranfval 49607 lanpropd 49608 ranpropd 49609 lanup 49634 ranup 49635 lmdfval 49642 cmdfval 49643 lmdpropd 49650 cmdpropd 49651 concom 49656 coccom 49657 islmd 49658 iscmd 49659 cmddu 49661 |
| Copyright terms: Public domain | W3C validator |