Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 7273 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: csbov123 7297 prdsplusgfval 17102 prdsmulrfval 17104 prdsvscafval 17108 prdsdsval2 17112 xpsaddlem 17201 xpsvsca 17205 iscat 17298 iscatd 17299 iscatd2 17307 catcocl 17311 catass 17312 moni 17365 rcaninv 17423 subccocl 17476 isfunc 17495 funcco 17502 idfucl 17512 cofuval 17513 cofuval2 17518 cofucl 17519 funcres 17527 ressffth 17570 isnat 17579 nati 17587 fuccoval 17597 coaval 17699 catcisolem 17741 xpcco 17816 xpcco2 17820 1stfcl 17830 2ndfcl 17831 prfcl 17836 evlf2 17852 evlfcllem 17855 evlfcl 17856 curfval 17857 curf1 17859 curf12 17861 curf1cl 17862 curf2 17863 curf2val 17864 curf2cl 17865 curfcl 17866 uncfcurf 17873 hofval 17886 hof2fval 17889 hofcl 17893 yonedalem4a 17909 yonedalem3 17914 yonedainv 17915 isdlat 18155 issgrp 18291 ismndd 18322 grpsubfval 18538 grpsubfvalALT 18539 grpsubpropd 18595 imasgrp 18606 subgsub 18682 eqgfval 18719 dpjfval 19573 issrg 19658 isring 19702 isringd 19739 dvrfval 19841 isdrngd 19931 issrngd 20036 islmodd 20044 isphld 20771 phlssphl 20776 pjfval 20823 islindf 20929 isassa 20973 isassad 20981 asclfval 20993 ressascl 21010 psrval 21028 coe1tm 21354 evl1varpw 21437 scmatval 21561 mdetfval 21643 smadiadetr 21732 pmatcollpw2lem 21834 pm2mpval 21852 pm2mpghm 21873 chpmatfval 21887 cpmadugsumlemB 21931 xkohmeo 22874 xpsdsval 23442 prdsxmslem2 23591 nmfval 23650 nmpropd 23656 nmpropd2 23657 subgnm 23695 tngnm 23721 cph2di 24276 cphassr 24281 ipcau2 24303 tcphcphlem2 24305 rrxplusgvscavalb 24464 q1pval 25223 r1pval 25226 dvntaylp 25435 israg 26962 ttgval 27140 grpodivfval 28797 dipfval 28965 lnoval 29015 ressnm 31138 isslmd 31357 idlinsubrg 31510 fedgmullem2 31613 qqhval 31824 sitgval 32199 rdgeqoa 35468 prdsbnd2 35880 isrngo 35982 lflset 37000 islfld 37003 ldualset 37066 cmtfvalN 37151 isoml 37179 ltrnfset 38058 trlfset 38101 docaffvalN 39062 diblss 39111 dihffval 39171 dihfval 39172 hvmapffval 39699 hvmapfval 39700 hgmapfval 39827 mendval 40924 hoidmvlelem3 44025 hspmbllem2 44055 isasslaw 45274 isrng 45322 lidlmsgrp 45372 lidlrng 45373 zlmodzxzscm 45581 lcoop 45640 lincvalsng 45645 lincvalpr 45647 lincdifsn 45653 islininds 45675 lines 45965 mndtchom 46257 mndtcco 46258 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |