| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7363 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7364 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: csbov123 7390 prdsplusgfval 17378 prdsmulrfval 17380 prdsvscafval 17384 prdsdsval2 17388 xpsaddlem 17477 xpsvsca 17481 iscat 17578 iscatd 17579 iscatd2 17587 catcocl 17591 catass 17592 moni 17643 rcaninv 17701 subccocl 17752 isfunc 17771 funcco 17778 idfucl 17788 cofuval 17789 cofuval2 17794 cofucl 17795 funcres 17803 ressffth 17847 isnat 17857 nati 17865 fuccoval 17873 coaval 17975 catcisolem 18017 xpcco 18089 xpcco2 18093 1stfcl 18103 2ndfcl 18104 prfcl 18109 evlf2 18124 evlfcllem 18127 evlfcl 18128 curfval 18129 curf1 18131 curf12 18133 curf1cl 18134 curf2 18135 curf2val 18136 curf2cl 18137 curfcl 18138 uncfcurf 18145 hofval 18158 hof2fval 18161 hofcl 18165 yonedalem4a 18181 yonedalem3 18186 yonedainv 18187 isdlat 18428 issgrp 18628 issgrpd 18638 ismndd 18664 grpsubfval 18896 grpsubfvalALT 18897 grpsubpropd 18958 imasgrp 18969 subgsub 19051 eqgfval 19088 dpjfval 19969 isrng 20072 isrngd 20091 issrg 20106 isring 20155 isringd 20209 dvrfval 20320 isdrngd 20680 isdrngdOLD 20682 issrngd 20770 islmodd 20799 rnglidlmsgrp 21183 rnglidlrng 21184 rngqiprngimf1lem 21231 isphld 21591 phlssphl 21596 pjfval 21643 islindf 21749 isassa 21793 isassad 21802 asclfval 21816 ressascl 21833 psrval 21852 psdffval 22072 coe1tm 22187 evl1varpw 22276 evls1maplmhm 22292 scmatval 22419 mdetfval 22501 smadiadetr 22590 pmatcollpw2lem 22692 pm2mpval 22710 pm2mpghm 22731 chpmatfval 22745 cpmadugsumlemB 22789 xkohmeo 23730 xpsdsval 24296 prdsxmslem2 24444 nmfval 24503 nmpropd 24509 nmpropd2 24510 subgnm 24548 tngnm 24566 cph2di 25134 cphassr 25139 ipcau2 25161 tcphcphlem2 25163 rrxplusgvscavalb 25322 q1pval 26087 r1pval 26090 dvntaylp 26306 israg 28675 ttgval 28853 grpodivfval 30514 dipfval 30682 lnoval 30732 ressnm 32945 isslmd 33171 erlval 33225 rlocval 33226 idlinsubrg 33396 zringfrac 33519 fedgmullem2 33643 qqhval 33985 sitgval 34345 rdgeqoa 37414 prdsbnd2 37845 isrngo 37947 lflset 39168 islfld 39171 ldualset 39234 cmtfvalN 39319 isoml 39347 ltrnfset 40226 trlfset 40269 docaffvalN 41230 diblss 41279 dihffval 41339 dihfval 41340 hvmapffval 41867 hvmapfval 41868 hgmapfval 41995 isprimroot 42196 primrootsunit1 42200 aks6d1c1p4 42214 aks5lem3a 42292 imacrhmcl 42617 mendval 43282 hoidmvlelem3 46705 hspmbllem2 46735 isasslaw 48302 zlmodzxzscm 48467 lcoop 48522 lincvalsng 48527 lincvalpr 48529 lincdifsn 48535 islininds 48557 lines 48842 discsubc 49175 cofu2a 49206 cofid2 49226 cofidf2 49231 imaf1co 49266 upciclem1 49277 upfval2 49288 upfval3 49289 isuplem 49290 oppcup3lem 49317 uptrlem1 49321 uptr2 49332 swapfcoa 49392 tposcurf2val 49412 fuco21 49447 fuco23 49452 fuco22natlem3 49455 fucoid 49459 fucocolem2 49465 fucocolem4 49467 oppfdiag 49527 oppcthinendcALT 49552 isinito2lem 49609 dfinito4 49612 mndtchom 49695 mndtcco 49696 mndtccatid 49698 2arwcat 49711 setc1onsubc 49713 lanfval 49724 ranfval 49725 lanpropd 49726 ranpropd 49727 lanup 49752 ranup 49753 lmdfval 49760 cmdfval 49761 lmdpropd 49768 cmdpropd 49769 concom 49774 coccom 49775 islmd 49776 iscmd 49777 cmddu 49779 |
| Copyright terms: Public domain | W3C validator |