| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
| 3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | oveq12d 7387 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: csbov123 7413 prdsplusgfval 17413 prdsmulrfval 17415 prdsvscafval 17419 prdsdsval2 17423 xpsaddlem 17512 xpsvsca 17516 iscat 17613 iscatd 17614 iscatd2 17622 catcocl 17626 catass 17627 moni 17678 rcaninv 17736 subccocl 17787 isfunc 17806 funcco 17813 idfucl 17823 cofuval 17824 cofuval2 17829 cofucl 17830 funcres 17838 ressffth 17882 isnat 17892 nati 17900 fuccoval 17908 coaval 18010 catcisolem 18052 xpcco 18124 xpcco2 18128 1stfcl 18138 2ndfcl 18139 prfcl 18144 evlf2 18159 evlfcllem 18162 evlfcl 18163 curfval 18164 curf1 18166 curf12 18168 curf1cl 18169 curf2 18170 curf2val 18171 curf2cl 18172 curfcl 18173 uncfcurf 18180 hofval 18193 hof2fval 18196 hofcl 18200 yonedalem4a 18216 yonedalem3 18221 yonedainv 18222 isdlat 18463 issgrp 18629 issgrpd 18639 ismndd 18665 grpsubfval 18897 grpsubfvalALT 18898 grpsubpropd 18959 imasgrp 18970 subgsub 19052 eqgfval 19090 dpjfval 19971 isrng 20074 isrngd 20093 issrg 20108 isring 20157 isringd 20211 dvrfval 20322 isdrngd 20685 isdrngdOLD 20687 issrngd 20775 islmodd 20804 rnglidlmsgrp 21188 rnglidlrng 21189 rngqiprngimf1lem 21236 isphld 21596 phlssphl 21601 pjfval 21648 islindf 21754 isassa 21798 isassad 21807 asclfval 21821 ressascl 21838 psrval 21857 psdffval 22077 coe1tm 22192 evl1varpw 22281 evls1maplmhm 22297 scmatval 22424 mdetfval 22506 smadiadetr 22595 pmatcollpw2lem 22697 pm2mpval 22715 pm2mpghm 22736 chpmatfval 22750 cpmadugsumlemB 22794 xkohmeo 23735 xpsdsval 24302 prdsxmslem2 24450 nmfval 24509 nmpropd 24515 nmpropd2 24516 subgnm 24554 tngnm 24572 cph2di 25140 cphassr 25145 ipcau2 25167 tcphcphlem2 25169 rrxplusgvscavalb 25328 q1pval 26093 r1pval 26096 dvntaylp 26312 israg 28677 ttgval 28855 grpodivfval 30513 dipfval 30681 lnoval 30731 ressnm 32936 isslmd 33171 erlval 33225 rlocval 33226 idlinsubrg 33395 zringfrac 33518 fedgmullem2 33619 qqhval 33955 sitgval 34316 rdgeqoa 37351 prdsbnd2 37782 isrngo 37884 lflset 39045 islfld 39048 ldualset 39111 cmtfvalN 39196 isoml 39224 ltrnfset 40104 trlfset 40147 docaffvalN 41108 diblss 41157 dihffval 41217 dihfval 41218 hvmapffval 41745 hvmapfval 41746 hgmapfval 41873 isprimroot 42074 primrootsunit1 42078 aks6d1c1p4 42092 aks5lem3a 42170 imacrhmcl 42495 mendval 43161 hoidmvlelem3 46588 hspmbllem2 46618 isasslaw 48173 zlmodzxzscm 48338 lcoop 48393 lincvalsng 48398 lincvalpr 48400 lincdifsn 48406 islininds 48428 lines 48713 discsubc 49046 cofu2a 49077 cofid2 49097 cofidf2 49102 imaf1co 49137 upciclem1 49148 upfval2 49159 upfval3 49160 isuplem 49161 oppcup3lem 49188 uptrlem1 49192 uptr2 49203 swapfcoa 49263 tposcurf2val 49283 fuco21 49318 fuco23 49323 fuco22natlem3 49326 fucoid 49330 fucocolem2 49336 fucocolem4 49338 oppfdiag 49398 oppcthinendcALT 49423 isinito2lem 49480 dfinito4 49483 mndtchom 49566 mndtcco 49567 mndtccatid 49569 2arwcat 49582 setc1onsubc 49584 lanfval 49595 ranfval 49596 lanpropd 49597 ranpropd 49598 lanup 49623 ranup 49624 lmdfval 49631 cmdfval 49632 lmdpropd 49639 cmdpropd 49640 concom 49645 coccom 49646 islmd 49647 iscmd 49648 cmddu 49650 |
| Copyright terms: Public domain | W3C validator |