![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 6922 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 6923 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2861 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 (class class class)co 6905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 |
This theorem is referenced by: csbov123 6946 prdsplusgfval 16487 prdsmulrfval 16489 prdsvscafval 16493 prdsdsval2 16497 xpsaddlem 16588 xpsvsca 16592 iscat 16685 iscatd 16686 iscatd2 16694 catcocl 16698 catass 16699 moni 16748 rcaninv 16806 subccocl 16857 isfunc 16876 funcco 16883 idfucl 16893 cofuval 16894 cofuval2 16899 cofucl 16900 funcres 16908 ressffth 16950 isnat 16959 nati 16967 fuccoval 16975 coaval 17070 catcisolem 17108 xpcco 17176 xpcco2 17180 1stfcl 17190 2ndfcl 17191 prfcl 17196 evlf2 17211 evlfcllem 17214 evlfcl 17215 curfval 17216 curf1 17218 curf12 17220 curf1cl 17221 curf2 17222 curf2val 17223 curf2cl 17224 curfcl 17225 uncfcurf 17232 hofval 17245 hof2fval 17248 hofcl 17252 yonedalem4a 17268 yonedalem3 17273 yonedainv 17274 isdlat 17546 issgrp 17638 ismndd 17666 grpsubfval 17818 grpsubpropd 17874 imasgrp 17885 subgsub 17957 eqgfval 17993 dpjfval 18808 issrg 18861 isring 18905 isringd 18939 dvrfval 19038 isdrngd 19128 issrngd 19217 islmodd 19225 isassa 19676 isassad 19684 asclfval 19695 ressascl 19705 psrval 19723 coe1tm 20003 evl1varpw 20085 isphld 20361 phlssphl 20366 pjfval 20413 islindf 20518 scmatval 20678 mdetfval 20760 smadiadetr 20850 pmatcollpw2lem 20952 pm2mpval 20970 pm2mpghm 20991 chpmatfval 21005 cpmadugsumlemB 21049 xkohmeo 21989 xpsdsval 22556 prdsxmslem2 22704 nmfval 22763 nmpropd 22768 nmpropd2 22769 subgnm 22807 tngnm 22825 cph2di 23376 cphassr 23381 ipcau2 23402 tcphcphlem2 23404 rrxplusgvscavalb 23563 q1pval 24312 r1pval 24315 dvntaylp 24524 israg 26009 ttgval 26174 grpodivfval 27944 dipfval 28112 lnoval 28162 ressnm 30196 isslmd 30300 qqhval 30563 sitgval 30939 rdgeqoa 33763 prdsbnd2 34136 isrngo 34238 lflset 35134 islfld 35137 ldualset 35200 cmtfvalN 35285 isoml 35313 ltrnfset 36192 trlfset 36235 docaffvalN 37196 diblss 37245 dihffval 37305 dihfval 37306 hvmapffval 37833 hvmapfval 37834 hgmapfval 37961 mendval 38596 hoidmvlelem3 41605 hspmbllem2 41635 isasslaw 42675 isrng 42723 lidlmsgrp 42773 lidlrng 42774 zlmodzxzscm 42982 lcoop 43047 lincvalsng 43052 lincvalpr 43054 lincdifsn 43060 islininds 43082 lines 43282 |
Copyright terms: Public domain | W3C validator |