![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7447 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 7448 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: csbov123 7474 prdsplusgfval 17520 prdsmulrfval 17522 prdsvscafval 17526 prdsdsval2 17530 xpsaddlem 17619 xpsvsca 17623 iscat 17716 iscatd 17717 iscatd2 17725 catcocl 17729 catass 17730 moni 17783 rcaninv 17841 subccocl 17895 isfunc 17914 funcco 17921 idfucl 17931 cofuval 17932 cofuval2 17937 cofucl 17938 funcres 17946 ressffth 17991 isnat 18001 nati 18009 fuccoval 18019 coaval 18121 catcisolem 18163 xpcco 18238 xpcco2 18242 1stfcl 18252 2ndfcl 18253 prfcl 18258 evlf2 18274 evlfcllem 18277 evlfcl 18278 curfval 18279 curf1 18281 curf12 18283 curf1cl 18284 curf2 18285 curf2val 18286 curf2cl 18287 curfcl 18288 uncfcurf 18295 hofval 18308 hof2fval 18311 hofcl 18315 yonedalem4a 18331 yonedalem3 18336 yonedainv 18337 isdlat 18579 issgrp 18745 issgrpd 18755 ismndd 18781 grpsubfval 19013 grpsubfvalALT 19014 grpsubpropd 19075 imasgrp 19086 subgsub 19168 eqgfval 19206 dpjfval 20089 isrng 20171 isrngd 20190 issrg 20205 isring 20254 isringd 20304 dvrfval 20418 isdrngd 20781 isdrngdOLD 20783 issrngd 20872 islmodd 20880 rnglidlmsgrp 21273 rnglidlrng 21274 rngqiprngimf1lem 21321 isphld 21689 phlssphl 21694 pjfval 21743 islindf 21849 isassa 21893 isassad 21902 asclfval 21916 ressascl 21933 psrval 21952 psdffval 22178 coe1tm 22291 evl1varpw 22380 evls1maplmhm 22396 scmatval 22525 mdetfval 22607 smadiadetr 22696 pmatcollpw2lem 22798 pm2mpval 22816 pm2mpghm 22837 chpmatfval 22851 cpmadugsumlemB 22895 xkohmeo 23838 xpsdsval 24406 prdsxmslem2 24557 nmfval 24616 nmpropd 24622 nmpropd2 24623 subgnm 24661 tngnm 24687 cph2di 25254 cphassr 25259 ipcau2 25281 tcphcphlem2 25283 rrxplusgvscavalb 25442 q1pval 26208 r1pval 26211 dvntaylp 26427 israg 28719 ttgval 28897 ttgvalOLD 28898 grpodivfval 30562 dipfval 30730 lnoval 30780 ressnm 32933 isslmd 33190 erlval 33244 rlocval 33245 idlinsubrg 33438 zringfrac 33561 fedgmullem2 33657 qqhval 33934 sitgval 34313 rdgeqoa 37352 prdsbnd2 37781 isrngo 37883 lflset 39040 islfld 39043 ldualset 39106 cmtfvalN 39191 isoml 39219 ltrnfset 40099 trlfset 40142 docaffvalN 41103 diblss 41152 dihffval 41212 dihfval 41213 hvmapffval 41740 hvmapfval 41741 hgmapfval 41868 isprimroot 42074 primrootsunit1 42078 aks6d1c1p4 42092 aks5lem3a 42170 imacrhmcl 42500 mendval 43167 hoidmvlelem3 46552 hspmbllem2 46582 isasslaw 48035 zlmodzxzscm 48201 lcoop 48256 lincvalsng 48261 lincvalpr 48263 lincdifsn 48269 islininds 48291 lines 48580 upciclem1 48811 mndtchom 48892 mndtcco 48893 mndtccatid 48895 |
Copyright terms: Public domain | W3C validator |