| Step | Hyp | Ref
| Expression |
| 1 | | idfudiag1.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 3 | | eqidd 2737 |
. . 3
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) |
| 4 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐶)‘𝑝) = ((Hom ‘𝐶)‘〈𝑦, 𝑧〉)) |
| 5 | | df-ov 7413 |
. . . . . . . . . . 11
⊢ (𝑦(Hom ‘𝐶)𝑧) = ((Hom ‘𝐶)‘〈𝑦, 𝑧〉) |
| 6 | 4, 5 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐶)‘𝑝) = (𝑦(Hom ‘𝐶)𝑧)) |
| 7 | 6 | reseq2d 5971 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ( I ↾ ((Hom ‘𝐶)‘𝑝)) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) |
| 8 | 7 | mpompt 7526 |
. . . . . . . 8
⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧)))) |
| 10 | | ovex 7443 |
. . . . . . . 8
⊢ (𝑦(Hom ‘𝐶)𝑧) ∈ V |
| 11 | | resiexg 7913 |
. . . . . . . 8
⊢ ((𝑦(Hom ‘𝐶)𝑧) ∈ V → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V) |
| 12 | 10, 11 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V) |
| 13 | 9, 12 | ovmpt4d 48808 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) |
| 14 | | idfudiag1.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 = 𝐾) |
| 15 | | idfudiag1.i |
. . . . . . . . . 10
⊢ 𝐼 =
(idfunc‘𝐶) |
| 16 | | idfudiag1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 17 | | eqid 2736 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 18 | 15, 1, 16, 17 | idfuval 17894 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) |
| 19 | | idfudiag1.l |
. . . . . . . . . 10
⊢ 𝐿 = (𝐶Δfunc𝐶) |
| 20 | | idfudiag1.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 21 | | idfudiag1.k |
. . . . . . . . . 10
⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| 22 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 23 | 19, 16, 16, 1, 20, 21, 1, 17, 22 | diag1a 49183 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 24 | 14, 18, 23 | 3eqtr3d 2779 |
. . . . . . . 8
⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 25 | 1 | fvexi 6895 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
| 26 | | resiexg 7913 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ V → ( I ↾
𝐵) ∈
V) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐵) ∈
V |
| 28 | 25, 25 | xpex 7752 |
. . . . . . . . . . 11
⊢ (𝐵 × 𝐵) ∈ V |
| 29 | 28 | mptex 7220 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V |
| 30 | 27, 29 | opth 5456 |
. . . . . . . . 9
⊢ (〈(
I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 ↔ (( I ↾ 𝐵) = (𝐵 × {𝑋}) ∧ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})))) |
| 31 | 30 | simprbi 496 |
. . . . . . . 8
⊢ (〈(
I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))) |
| 32 | 24, 31 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))) |
| 33 | | snex 5411 |
. . . . . . . . 9
⊢
{((Id‘𝐶)‘𝑋)} ∈ V |
| 34 | 10, 33 | xpex 7752 |
. . . . . . . 8
⊢ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V |
| 35 | 34 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V) |
| 36 | 32, 35 | ovmpt4d 48808 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})) |
| 37 | 13, 36 | eqtr3d 2773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})) |
| 38 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐶 ∈ Cat) |
| 39 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 40 | 1, 17, 22, 38, 39 | catidcl 17699 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦)) |
| 41 | 15, 19, 16, 1, 20, 21, 14 | idfudiag1bas 49376 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = {𝑋}) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐵 = {𝑋}) |
| 43 | 39, 42 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ {𝑋}) |
| 44 | | elsni 4623 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑋} → 𝑦 = 𝑋) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 = 𝑋) |
| 46 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
| 47 | 46, 42 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ {𝑋}) |
| 48 | | elsni 4623 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑋} → 𝑧 = 𝑋) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 = 𝑋) |
| 50 | 45, 49 | eqtr4d 2774 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 = 𝑧) |
| 51 | 50 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑦) = (𝑦(Hom ‘𝐶)𝑧)) |
| 52 | 40, 51 | eleqtrd 2837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 53 | 52 | ne0d 4322 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) ≠ ∅) |
| 54 | 37, 53 | idfudiag1lem 49375 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)}) |
| 55 | | mosn 48758 |
. . . 4
⊢ ((𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)} → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 56 | 54, 55 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 57 | 2, 3, 56, 16 | isthincd 49289 |
. 2
⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 58 | | sneq 4616 |
. . . 4
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
| 59 | 58 | eqeq2d 2747 |
. . 3
⊢ (𝑥 = 𝑋 → (𝐵 = {𝑥} ↔ 𝐵 = {𝑋})) |
| 60 | 20, 41, 59 | spcedv 3582 |
. 2
⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| 61 | 1 | istermc 49327 |
. 2
⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧
∃𝑥 𝐵 = {𝑥})) |
| 62 | 57, 60, 61 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐶 ∈ TermCat) |