| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idfudiag1.b | . . . 4
⊢ 𝐵 = (Base‘𝐶) | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | 
| 3 |  | eqidd 2737 | . . 3
⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶)) | 
| 4 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐶)‘𝑝) = ((Hom ‘𝐶)‘〈𝑦, 𝑧〉)) | 
| 5 |  | df-ov 7435 | . . . . . . . . . . 11
⊢ (𝑦(Hom ‘𝐶)𝑧) = ((Hom ‘𝐶)‘〈𝑦, 𝑧〉) | 
| 6 | 4, 5 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐶)‘𝑝) = (𝑦(Hom ‘𝐶)𝑧)) | 
| 7 | 6 | reseq2d 5996 | . . . . . . . . 9
⊢ (𝑝 = 〈𝑦, 𝑧〉 → ( I ↾ ((Hom ‘𝐶)‘𝑝)) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) | 
| 8 | 7 | mpompt 7548 | . . . . . . . 8
⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) | 
| 9 | 8 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧)))) | 
| 10 |  | ovex 7465 | . . . . . . . 8
⊢ (𝑦(Hom ‘𝐶)𝑧) ∈ V | 
| 11 |  | resiexg 7935 | . . . . . . . 8
⊢ ((𝑦(Hom ‘𝐶)𝑧) ∈ V → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V) | 
| 12 | 10, 11 | mp1i 13 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V) | 
| 13 | 9, 12 | ovmpt4d 48773 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧))) | 
| 14 |  | idfudiag1.e | . . . . . . . . 9
⊢ (𝜑 → 𝐼 = 𝐾) | 
| 15 |  | idfudiag1.i | . . . . . . . . . 10
⊢ 𝐼 =
(idfunc‘𝐶) | 
| 16 |  | idfudiag1.c | . . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 17 |  | eqid 2736 | . . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 18 | 15, 1, 16, 17 | idfuval 17922 | . . . . . . . . 9
⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉) | 
| 19 |  | idfudiag1.l | . . . . . . . . . 10
⊢ 𝐿 = (𝐶Δfunc𝐶) | 
| 20 |  | idfudiag1.x | . . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 21 |  | idfudiag1.k | . . . . . . . . . 10
⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | 
| 22 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Id‘𝐶) =
(Id‘𝐶) | 
| 23 | 19, 16, 16, 1, 20, 21, 1, 17, 22 | diag1a 49023 | . . . . . . . . 9
⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) | 
| 24 | 14, 18, 23 | 3eqtr3d 2784 | . . . . . . . 8
⊢ (𝜑 → 〈( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) | 
| 25 | 1 | fvexi 6919 | . . . . . . . . . . 11
⊢ 𝐵 ∈ V | 
| 26 |  | resiexg 7935 | . . . . . . . . . . 11
⊢ (𝐵 ∈ V → ( I ↾
𝐵) ∈
V) | 
| 27 | 25, 26 | ax-mp 5 | . . . . . . . . . 10
⊢ ( I
↾ 𝐵) ∈
V | 
| 28 | 25, 25 | xpex 7774 | . . . . . . . . . . 11
⊢ (𝐵 × 𝐵) ∈ V | 
| 29 | 28 | mptex 7244 | . . . . . . . . . 10
⊢ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V | 
| 30 | 27, 29 | opth 5480 | . . . . . . . . 9
⊢ (〈(
I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 ↔ (( I ↾ 𝐵) = (𝐵 × {𝑋}) ∧ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})))) | 
| 31 | 30 | simprbi 496 | . . . . . . . 8
⊢ (〈(
I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))〉 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))) | 
| 32 | 24, 31 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))) | 
| 33 |  | snex 5435 | . . . . . . . . 9
⊢
{((Id‘𝐶)‘𝑋)} ∈ V | 
| 34 | 10, 33 | xpex 7774 | . . . . . . . 8
⊢ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V | 
| 35 | 34 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V) | 
| 36 | 32, 35 | ovmpt4d 48773 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})) | 
| 37 | 13, 36 | eqtr3d 2778 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})) | 
| 38 | 16 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐶 ∈ Cat) | 
| 39 |  | simprl 770 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 40 | 1, 17, 22, 38, 39 | catidcl 17726 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦)) | 
| 41 | 15, 19, 16, 1, 20, 21, 14 | idfudiag1bas 49182 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = {𝑋}) | 
| 42 | 41 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐵 = {𝑋}) | 
| 43 | 39, 42 | eleqtrd 2842 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ {𝑋}) | 
| 44 |  | elsni 4642 | . . . . . . . . . 10
⊢ (𝑦 ∈ {𝑋} → 𝑦 = 𝑋) | 
| 45 | 43, 44 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 = 𝑋) | 
| 46 |  | simprr 772 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 47 | 46, 42 | eleqtrd 2842 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ {𝑋}) | 
| 48 |  | elsni 4642 | . . . . . . . . . 10
⊢ (𝑧 ∈ {𝑋} → 𝑧 = 𝑋) | 
| 49 | 47, 48 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 = 𝑋) | 
| 50 | 45, 49 | eqtr4d 2779 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 = 𝑧) | 
| 51 | 50 | oveq2d 7448 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑦) = (𝑦(Hom ‘𝐶)𝑧)) | 
| 52 | 40, 51 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑧)) | 
| 53 | 52 | ne0d 4341 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) ≠ ∅) | 
| 54 | 37, 53 | idfudiag1lem 49181 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)}) | 
| 55 |  | mosn 48737 | . . . 4
⊢ ((𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)} → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)) | 
| 56 | 54, 55 | syl 17 | . . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)) | 
| 57 | 2, 3, 56, 16 | isthincd 49110 | . 2
⊢ (𝜑 → 𝐶 ∈ ThinCat) | 
| 58 |  | sneq 4635 | . . . 4
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | 
| 59 | 58 | eqeq2d 2747 | . . 3
⊢ (𝑥 = 𝑋 → (𝐵 = {𝑥} ↔ 𝐵 = {𝑋})) | 
| 60 | 20, 41, 59 | spcedv 3597 | . 2
⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) | 
| 61 | 1 | istermc 49146 | . 2
⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧
∃𝑥 𝐵 = {𝑥})) | 
| 62 | 57, 60, 61 | sylanbrc 583 | 1
⊢ (𝜑 → 𝐶 ∈ TermCat) |