Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfudiag1 Structured version   Visualization version   GIF version

Theorem idfudiag1 49509
Description: If the identity functor of a category is the same as a constant functor to the category, then the category is terminal. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
idfudiag1.i 𝐼 = (idfunc𝐶)
idfudiag1.l 𝐿 = (𝐶Δfunc𝐶)
idfudiag1.c (𝜑𝐶 ∈ Cat)
idfudiag1.b 𝐵 = (Base‘𝐶)
idfudiag1.x (𝜑𝑋𝐵)
idfudiag1.k 𝐾 = ((1st𝐿)‘𝑋)
idfudiag1.e (𝜑𝐼 = 𝐾)
Assertion
Ref Expression
idfudiag1 (𝜑𝐶 ∈ TermCat)

Proof of Theorem idfudiag1
Dummy variables 𝑓 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfudiag1.b . . . 4 𝐵 = (Base‘𝐶)
21a1i 11 . . 3 (𝜑𝐵 = (Base‘𝐶))
3 eqidd 2730 . . 3 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐶))
4 fveq2 6841 . . . . . . . . . . 11 (𝑝 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐶)‘𝑝) = ((Hom ‘𝐶)‘⟨𝑦, 𝑧⟩))
5 df-ov 7373 . . . . . . . . . . 11 (𝑦(Hom ‘𝐶)𝑧) = ((Hom ‘𝐶)‘⟨𝑦, 𝑧⟩)
64, 5eqtr4di 2782 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐶)‘𝑝) = (𝑦(Hom ‘𝐶)𝑧))
76reseq2d 5940 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐶)‘𝑝)) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧)))
87mpompt 7484 . . . . . . . 8 (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦𝐵, 𝑧𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧)))
98a1i 11 . . . . . . 7 (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦𝐵, 𝑧𝐵 ↦ ( I ↾ (𝑦(Hom ‘𝐶)𝑧))))
10 ovex 7403 . . . . . . . 8 (𝑦(Hom ‘𝐶)𝑧) ∈ V
11 resiexg 7869 . . . . . . . 8 ((𝑦(Hom ‘𝐶)𝑧) ∈ V → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V)
1210, 11mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) ∈ V)
139, 12ovmpt4d 48848 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ( I ↾ (𝑦(Hom ‘𝐶)𝑧)))
14 idfudiag1.e . . . . . . . . 9 (𝜑𝐼 = 𝐾)
15 idfudiag1.i . . . . . . . . . 10 𝐼 = (idfunc𝐶)
16 idfudiag1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
17 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
1815, 1, 16, 17idfuval 17820 . . . . . . . . 9 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))⟩)
19 idfudiag1.l . . . . . . . . . 10 𝐿 = (𝐶Δfunc𝐶)
20 idfudiag1.x . . . . . . . . . 10 (𝜑𝑋𝐵)
21 idfudiag1.k . . . . . . . . . 10 𝐾 = ((1st𝐿)‘𝑋)
22 eqid 2729 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
2319, 16, 16, 1, 20, 21, 1, 17, 22diag1a 49289 . . . . . . . . 9 (𝜑𝐾 = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩)
2414, 18, 233eqtr3d 2772 . . . . . . . 8 (𝜑 → ⟨( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))⟩ = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩)
251fvexi 6855 . . . . . . . . . . 11 𝐵 ∈ V
26 resiexg 7869 . . . . . . . . . . 11 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
2725, 26ax-mp 5 . . . . . . . . . 10 ( I ↾ 𝐵) ∈ V
2825, 25xpex 7710 . . . . . . . . . . 11 (𝐵 × 𝐵) ∈ V
2928mptex 7180 . . . . . . . . . 10 (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) ∈ V
3027, 29opth 5431 . . . . . . . . 9 (⟨( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))⟩ = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩ ↔ (( I ↾ 𝐵) = (𝐵 × {𝑋}) ∧ (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))))
3130simprbi 496 . . . . . . . 8 (⟨( I ↾ 𝐵), (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))⟩ = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩ → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})))
3224, 31syl 17 . . . . . . 7 (𝜑 → (𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝))) = (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)})))
33 snex 5386 . . . . . . . . 9 {((Id‘𝐶)‘𝑋)} ∈ V
3410, 33xpex 7710 . . . . . . . 8 ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V
3534a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}) ∈ V)
3632, 35ovmpt4d 48848 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(𝑝 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑝)))𝑧) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))
3713, 36eqtr3d 2766 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ( I ↾ (𝑦(Hom ‘𝐶)𝑧)) = ((𝑦(Hom ‘𝐶)𝑧) × {((Id‘𝐶)‘𝑋)}))
3816adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐶 ∈ Cat)
39 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
401, 17, 22, 38, 39catidcl 17625 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑦))
4115, 19, 16, 1, 20, 21, 14idfudiag1bas 49508 . . . . . . . . . . . 12 (𝜑𝐵 = {𝑋})
4241adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐵 = {𝑋})
4339, 42eleqtrd 2830 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 ∈ {𝑋})
44 elsni 4602 . . . . . . . . . 10 (𝑦 ∈ {𝑋} → 𝑦 = 𝑋)
4543, 44syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 = 𝑋)
46 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
4746, 42eleqtrd 2830 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 ∈ {𝑋})
48 elsni 4602 . . . . . . . . . 10 (𝑧 ∈ {𝑋} → 𝑧 = 𝑋)
4947, 48syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 = 𝑋)
5045, 49eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 = 𝑧)
5150oveq2d 7386 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(Hom ‘𝐶)𝑦) = (𝑦(Hom ‘𝐶)𝑧))
5240, 51eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((Id‘𝐶)‘𝑦) ∈ (𝑦(Hom ‘𝐶)𝑧))
5352ne0d 4301 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(Hom ‘𝐶)𝑧) ≠ ∅)
5437, 53idfudiag1lem 49507 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)})
55 mosn 48796 . . . 4 ((𝑦(Hom ‘𝐶)𝑧) = {((Id‘𝐶)‘𝑋)} → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))
5654, 55syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))
572, 3, 56, 16isthincd 49420 . 2 (𝜑𝐶 ∈ ThinCat)
58 sneq 4595 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5958eqeq2d 2740 . . 3 (𝑥 = 𝑋 → (𝐵 = {𝑥} ↔ 𝐵 = {𝑋}))
6020, 41, 59spcedv 3561 . 2 (𝜑 → ∃𝑥 𝐵 = {𝑥})
611istermc 49458 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
6257, 60, 61sylanbrc 583 1 (𝜑𝐶 ∈ TermCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  Vcvv 3444  {csn 4585  cop 4591  cmpt 5183   I cid 5525   × cxp 5629  cres 5633  cfv 6500  (class class class)co 7370  cmpo 7372  1st c1st 7946  Basecbs 17157  Hom chom 17209  Catccat 17607  Idccid 17608  idfunccidfu 17799  Δfunccdiag 18155  ThinCatcthinc 49401  TermCatctermc 49456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-er 8649  df-map 8779  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-fz 13448  df-struct 17095  df-slot 17130  df-ndx 17142  df-base 17158  df-hom 17222  df-cco 17223  df-cat 17611  df-cid 17612  df-func 17802  df-idfu 17803  df-nat 17890  df-fuc 17891  df-xpc 18115  df-1stf 18116  df-curf 18157  df-diag 18159  df-thinc 49402  df-termc 49457
This theorem is referenced by:  euendfunc  49510
  Copyright terms: Public domain W3C validator