Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc2 Structured version   Visualization version   GIF version

Theorem istermc2 49444
Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐵

Proof of Theorem istermc2
StepHypRef Expression
1 istermc.b . . 3 𝐵 = (Base‘𝐶)
21istermc 49443 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
3 eusn 4696 . . 3 (∃!𝑥 𝑥𝐵 ↔ ∃𝑥 𝐵 = {𝑥})
43anbi2i 623 . 2 ((𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
52, 4bitr4i 278 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  {csn 4591  cfv 6513  Basecbs 17185  ThinCatcthinc 49386  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-termc 49442
This theorem is referenced by:  arweutermc  49499  diag1f1o  49503  diag2f1o  49506
  Copyright terms: Public domain W3C validator