Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc2 Structured version   Visualization version   GIF version

Theorem istermc2 49507
Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐵

Proof of Theorem istermc2
StepHypRef Expression
1 istermc.b . . 3 𝐵 = (Base‘𝐶)
21istermc 49506 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
3 eusn 4678 . . 3 (∃!𝑥 𝑥𝐵 ↔ ∃𝑥 𝐵 = {𝑥})
43anbi2i 623 . 2 ((𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
52, 4bitr4i 278 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {csn 4571  cfv 6476  Basecbs 17115  ThinCatcthinc 49449  TermCatctermc 49504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-termc 49505
This theorem is referenced by:  arweutermc  49562  diag1f1o  49566  diag2f1o  49569
  Copyright terms: Public domain W3C validator