| Step | Hyp | Ref
| Expression |
| 1 | | 0fucterm.q |
. . . . 5
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| 2 | 1 | fucbas 17931 |
. . . 4
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 4 | | eqid 2730 |
. . . . 5
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 5 | 1, 4 | fuchom 17932 |
. . . 4
⊢ (𝐶 Nat 𝐷) = (Hom ‘𝑄) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐶 Nat 𝐷) = (Hom ‘𝑄)) |
| 7 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 8 | 4, 7 | nat1st2nd 17922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 9 | | eqid 2730 |
. . . . . . . . 9
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 10 | 4, 8, 9 | natfn 17925 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 Fn (Base‘𝐶)) |
| 11 | | 0fucterm.b |
. . . . . . . . . 10
⊢ (𝜑 → ∅ =
(Base‘𝐶)) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → ∅ = (Base‘𝐶)) |
| 13 | 12 | fneq2d 6620 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (𝑎 Fn ∅ ↔ 𝑎 Fn (Base‘𝐶))) |
| 14 | 10, 13 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 Fn ∅) |
| 15 | | fn0 6657 |
. . . . . . 7
⊢ (𝑎 Fn ∅ ↔ 𝑎 = ∅) |
| 16 | 14, 15 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 = ∅) |
| 17 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 18 | 4, 17 | nat1st2nd 17922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 19 | 4, 18, 9 | natfn 17925 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 Fn (Base‘𝐶)) |
| 20 | 12 | fneq2d 6620 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (𝑏 Fn ∅ ↔ 𝑏 Fn (Base‘𝐶))) |
| 21 | 19, 20 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 Fn ∅) |
| 22 | | fn0 6657 |
. . . . . . 7
⊢ (𝑏 Fn ∅ ↔ 𝑏 = ∅) |
| 23 | 21, 22 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 = ∅) |
| 24 | 16, 23 | eqtr4d 2768 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 = 𝑏) |
| 25 | 24 | ralrimivva 3182 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)𝑎 = 𝑏) |
| 26 | | moel 3379 |
. . . 4
⊢
(∃*𝑎 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ↔ ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)𝑎 = 𝑏) |
| 27 | 25, 26 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ∃*𝑎 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 28 | | 0fucterm.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 29 | | 0catg 17655 |
. . . . 5
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 30 | 28, 11, 29 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 31 | | 0fucterm.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 32 | 1, 30, 31 | fuccat 17941 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Cat) |
| 33 | 3, 6, 27, 32 | isthincd 49314 |
. 2
⊢ (𝜑 → 𝑄 ∈ ThinCat) |
| 34 | | opex 5432 |
. . . 4
⊢
〈∅, ∅〉 ∈ V |
| 35 | 34 | a1i 11 |
. . 3
⊢ (𝜑 → 〈∅,
∅〉 ∈ V) |
| 36 | 28, 11, 31 | 0funcg 49002 |
. . 3
⊢ (𝜑 → (𝐶 Func 𝐷) = {〈∅,
∅〉}) |
| 37 | | sneq 4607 |
. . . 4
⊢ (𝑓 = 〈∅, ∅〉
→ {𝑓} =
{〈∅, ∅〉}) |
| 38 | 37 | eqeq2d 2741 |
. . 3
⊢ (𝑓 = 〈∅, ∅〉
→ ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {〈∅,
∅〉})) |
| 39 | 35, 36, 38 | spcedv 3573 |
. 2
⊢ (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓}) |
| 40 | 2 | istermc 49352 |
. 2
⊢ (𝑄 ∈ TermCat ↔ (𝑄 ∈ ThinCat ∧
∃𝑓(𝐶 Func 𝐷) = {𝑓})) |
| 41 | 33, 39, 40 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑄 ∈ TermCat) |