| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcpropd | Structured version Visualization version GIF version | ||
| Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcpropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| termcpropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| termcpropd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| termcpropd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| termcpropd | ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcpropd.1 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | termcpropd.2 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 3 | termcpropd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 4 | termcpropd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 5 | 1, 2, 3, 4 | thincpropd 49474 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) |
| 6 | 1 | homfeqbas 17597 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 7 | 6 | eqeq1d 2733 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) = {𝑥} ↔ (Base‘𝐷) = {𝑥})) |
| 8 | 7 | exbidv 1922 | . . 3 ⊢ (𝜑 → (∃𝑥(Base‘𝐶) = {𝑥} ↔ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 9 | 5, 8 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}) ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥}))) |
| 10 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | 10 | istermc 49506 | . 2 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 12 | eqid 2731 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 13 | 12 | istermc 49506 | . 2 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 14 | 9, 11, 13 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {csn 4571 ‘cfv 6476 Basecbs 17115 Homf chomf 17567 compfccomf 17568 ThinCatcthinc 49449 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-cat 17569 df-homf 17571 df-comf 17572 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: oppcterm 49538 |
| Copyright terms: Public domain | W3C validator |