| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcpropd | Structured version Visualization version GIF version | ||
| Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcpropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| termcpropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| termcpropd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| termcpropd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| termcpropd | ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcpropd.1 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | termcpropd.2 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 3 | termcpropd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 4 | termcpropd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 5 | 1, 2, 3, 4 | thincpropd 49064 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) |
| 6 | 1 | homfeqbas 17735 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 7 | 6 | eqeq1d 2738 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) = {𝑥} ↔ (Base‘𝐷) = {𝑥})) |
| 8 | 7 | exbidv 1921 | . . 3 ⊢ (𝜑 → (∃𝑥(Base‘𝐶) = {𝑥} ↔ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 9 | 5, 8 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}) ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥}))) |
| 10 | eqid 2736 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | 10 | istermc 49094 | . 2 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 12 | eqid 2736 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 13 | 12 | istermc 49094 | . 2 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 14 | 9, 11, 13 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {csn 4624 ‘cfv 6559 Basecbs 17243 Homf chomf 17705 compfccomf 17706 ThinCatcthinc 49040 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-cat 17707 df-homf 17709 df-comf 17710 df-thinc 49041 df-termc 49093 |
| This theorem is referenced by: oppcterm 49111 |
| Copyright terms: Public domain | W3C validator |