| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcpropd | Structured version Visualization version GIF version | ||
| Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcpropd.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| termcpropd.2 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| termcpropd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| termcpropd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| termcpropd | ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcpropd.1 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | termcpropd.2 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 3 | termcpropd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 4 | termcpropd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 5 | 1, 2, 3, 4 | thincpropd 49447 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) |
| 6 | 1 | homfeqbas 17621 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 7 | 6 | eqeq1d 2731 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) = {𝑥} ↔ (Base‘𝐷) = {𝑥})) |
| 8 | 7 | exbidv 1921 | . . 3 ⊢ (𝜑 → (∃𝑥(Base‘𝐶) = {𝑥} ↔ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 9 | 5, 8 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}) ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥}))) |
| 10 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | 10 | istermc 49479 | . 2 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥})) |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 13 | 12 | istermc 49479 | . 2 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥})) |
| 14 | 9, 11, 13 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4579 ‘cfv 6486 Basecbs 17139 Homf chomf 17591 compfccomf 17592 ThinCatcthinc 49422 TermCatctermc 49477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-cat 17593 df-homf 17595 df-comf 17596 df-thinc 49423 df-termc 49478 |
| This theorem is referenced by: oppcterm 49511 |
| Copyright terms: Public domain | W3C validator |