Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcpropd Structured version   Visualization version   GIF version

Theorem termcpropd 49535
Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
termcpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
termcpropd.3 (𝜑𝐶𝑉)
termcpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
termcpropd (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat))

Proof of Theorem termcpropd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 termcpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
3 termcpropd.3 . . . 4 (𝜑𝐶𝑉)
4 termcpropd.4 . . . 4 (𝜑𝐷𝑊)
51, 2, 3, 4thincpropd 49474 . . 3 (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
61homfeqbas 17597 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
76eqeq1d 2733 . . . 4 (𝜑 → ((Base‘𝐶) = {𝑥} ↔ (Base‘𝐷) = {𝑥}))
87exbidv 1922 . . 3 (𝜑 → (∃𝑥(Base‘𝐶) = {𝑥} ↔ ∃𝑥(Base‘𝐷) = {𝑥}))
95, 8anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}) ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥})))
10 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
1110istermc 49506 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}))
12 eqid 2731 . . 3 (Base‘𝐷) = (Base‘𝐷)
1312istermc 49506 . 2 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥}))
149, 11, 133bitr4g 314 1 (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {csn 4571  cfv 6476  Basecbs 17115  Homf chomf 17567  compfccomf 17568  ThinCatcthinc 49449  TermCatctermc 49504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17569  df-homf 17571  df-comf 17572  df-thinc 49450  df-termc 49505
This theorem is referenced by:  oppcterm  49538
  Copyright terms: Public domain W3C validator