Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcpropd Structured version   Visualization version   GIF version

Theorem termcpropd 49108
Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
termcpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
termcpropd.3 (𝜑𝐶𝑉)
termcpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
termcpropd (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat))

Proof of Theorem termcpropd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 termcpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
3 termcpropd.3 . . . 4 (𝜑𝐶𝑉)
4 termcpropd.4 . . . 4 (𝜑𝐷𝑊)
51, 2, 3, 4thincpropd 49064 . . 3 (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
61homfeqbas 17735 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
76eqeq1d 2738 . . . 4 (𝜑 → ((Base‘𝐶) = {𝑥} ↔ (Base‘𝐷) = {𝑥}))
87exbidv 1921 . . 3 (𝜑 → (∃𝑥(Base‘𝐶) = {𝑥} ↔ ∃𝑥(Base‘𝐷) = {𝑥}))
95, 8anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}) ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥})))
10 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
1110istermc 49094 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥(Base‘𝐶) = {𝑥}))
12 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
1312istermc 49094 . 2 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃𝑥(Base‘𝐷) = {𝑥}))
149, 11, 133bitr4g 314 1 (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {csn 4624  cfv 6559  Basecbs 17243  Homf chomf 17705  compfccomf 17706  ThinCatcthinc 49040  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-cat 17707  df-homf 17709  df-comf 17710  df-thinc 49041  df-termc 49093
This theorem is referenced by:  oppcterm  49111
  Copyright terms: Public domain W3C validator