| Step | Hyp | Ref
| Expression |
| 1 | | funcsn.q |
. . . . 5
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| 2 | 1 | fucbas 17931 |
. . . 4
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 4 | | eqid 2730 |
. . . . 5
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 5 | 1, 4 | fuchom 17932 |
. . . 4
⊢ (𝐶 Nat 𝐷) = (Hom ‘𝑄) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐶 Nat 𝐷) = (Hom ‘𝑄)) |
| 7 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 8 | 4, 7 | nat1st2nd 17922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 9 | | eqid 2730 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 10 | 4, 8, 9 | natfn 17925 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 Fn (Base‘𝐶)) |
| 11 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 12 | 4, 11 | nat1st2nd 17922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 13 | 4, 12, 9 | natfn 17925 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑏 Fn (Base‘𝐶)) |
| 14 | | eqid 2730 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 15 | 4, 8 | natrcl2 49128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (1st ‘𝑓)(𝐶 Func 𝐷)(2nd ‘𝑓)) |
| 16 | 9, 14, 15 | funcf1 17834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (1st ‘𝑓):(Base‘𝐶)⟶(Base‘𝐷)) |
| 17 | 16 | ffvelcdmda 7063 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝑓)‘𝑥) ∈ (Base‘𝐷)) |
| 18 | 4, 8 | natrcl3 49129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (1st ‘𝑔)(𝐶 Func 𝐷)(2nd ‘𝑔)) |
| 19 | 9, 14, 18 | funcf1 17834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → (1st ‘𝑔):(Base‘𝐶)⟶(Base‘𝐷)) |
| 20 | 19 | ffvelcdmda 7063 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝑔)‘𝑥) ∈ (Base‘𝐷)) |
| 21 | 8 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 22 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 23 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 24 | 4, 21, 9, 22, 23 | natcl 17924 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘𝑥) ∈ (((1st ‘𝑓)‘𝑥)(Hom ‘𝐷)((1st ‘𝑔)‘𝑥))) |
| 25 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑏 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐶 Nat 𝐷)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 26 | 4, 25, 9, 22, 23 | natcl 17924 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑏‘𝑥) ∈ (((1st ‘𝑓)‘𝑥)(Hom ‘𝐷)((1st ‘𝑔)‘𝑥))) |
| 27 | | funcsn.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 28 | 27 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ ThinCat) |
| 29 | 17, 20, 24, 26, 14, 22, 28 | thincmo2 49304 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘𝑥) = (𝑏‘𝑥)) |
| 30 | 10, 13, 29 | eqfnfvd 7013 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ 𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))) → 𝑎 = 𝑏) |
| 31 | 30 | ralrimivva 3182 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)𝑎 = 𝑏) |
| 32 | | moel 3379 |
. . . . 5
⊢
(∃*𝑎 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ↔ ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀𝑏 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)𝑎 = 𝑏) |
| 33 | 31, 32 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∃*𝑎 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 34 | 33 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ∃*𝑎 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)) |
| 35 | | funcsn.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 36 | | snidg 4632 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ {𝐹}) |
| 37 | 35, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ {𝐹}) |
| 38 | | funcsn.c |
. . . . . . 7
⊢ (𝜑 → (𝐶 Func 𝐷) = {𝐹}) |
| 39 | 37, 38 | eleqtrrd 2832 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 40 | 39 | func1st2nd 48993 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 41 | 40 | funcrcl2 48996 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 42 | 27 | thinccd 49301 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 43 | 1, 41, 42 | fuccat 17941 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Cat) |
| 44 | 3, 6, 34, 43 | isthincd 49314 |
. 2
⊢ (𝜑 → 𝑄 ∈ ThinCat) |
| 45 | | sneq 4607 |
. . . 4
⊢ (𝑓 = 𝐹 → {𝑓} = {𝐹}) |
| 46 | 45 | eqeq2d 2741 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {𝐹})) |
| 47 | 35, 38, 46 | spcedv 3573 |
. 2
⊢ (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓}) |
| 48 | 2 | istermc 49352 |
. 2
⊢ (𝑄 ∈ TermCat ↔ (𝑄 ∈ ThinCat ∧
∃𝑓(𝐶 Func 𝐷) = {𝑓})) |
| 49 | 44, 47, 48 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑄 ∈ TermCat) |