Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2ub | Structured version Visualization version GIF version |
Description: The integral of a nonnegative real function 𝐹 is an upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2ub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2lcl 24881 | . . 3 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
3 | 1 | itg2lr 24884 | . . . 4 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
4 | 3 | 3adant1 1129 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
5 | supxrub 13047 | . . 3 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ (∫1‘𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) → (∫1‘𝐺) ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | |
6 | 2, 4, 5 | sylancr 587 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
7 | 1 | itg2val 24882 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
8 | 7 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
9 | 6, 8 | breqtrrd 5103 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ≤ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ⊆ wss 3888 class class class wbr 5075 dom cdm 5586 ⟶wf 6424 ‘cfv 6428 (class class class)co 7269 ∘r cofr 7524 supcsup 9188 ℝcr 10859 0cc0 10860 +∞cpnf 10995 ℝ*cxr 10997 < clt 10998 ≤ cle 10999 [,]cicc 13071 ∫1citg1 24768 ∫2citg2 24769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-inf2 9388 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-pre-sup 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-se 5542 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-isom 6437 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-er 8487 df-map 8606 df-pm 8607 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-sup 9190 df-inf 9191 df-oi 9258 df-dju 9648 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-div 11622 df-nn 11963 df-2 12025 df-3 12026 df-n0 12223 df-z 12309 df-uz 12572 df-q 12678 df-rp 12720 df-xadd 12838 df-ioo 13072 df-ico 13074 df-icc 13075 df-fz 13229 df-fzo 13372 df-fl 13501 df-seq 13711 df-exp 13772 df-hash 14034 df-cj 14799 df-re 14800 df-im 14801 df-sqrt 14935 df-abs 14936 df-clim 15186 df-sum 15387 df-xmet 20579 df-met 20580 df-ovol 24617 df-vol 24618 df-mbf 24772 df-itg1 24773 df-itg2 24774 |
This theorem is referenced by: itg2ge0 24889 itg2itg1 24890 itg2le 24893 itg2seq 24896 itg2uba 24897 itg2mulclem 24900 itg2splitlem 24902 itg2monolem1 24904 itg2i1fseq3 24911 itg2addlem 24912 |
Copyright terms: Public domain | W3C validator |