![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0f | Structured version Visualization version GIF version |
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
xrge0f | ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6673 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 Fn ℝ) |
3 | ax-resscn 11117 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ) |
5 | 4, 1 | 0pledm 25074 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ (ℝ × {0}) ∘r ≤ 𝐹)) |
6 | 0re 11166 | . . . . . 6 ⊢ 0 ∈ ℝ | |
7 | fnconstg 6735 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ) |
9 | reex 11151 | . . . . . 6 ⊢ ℝ ∈ V | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
11 | inidm 4183 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
12 | c0ex 11158 | . . . . . . 7 ⊢ 0 ∈ V | |
13 | 12 | fvconst2 7158 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0) |
14 | 13 | adantl 482 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0) |
15 | eqidd 2732 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
16 | 8, 1, 10, 10, 11, 14, 15 | ofrfval 7632 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
17 | ffvelcdm 7037 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
18 | 17 | rexrd 11214 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 18 | biantrurd 533 | . . . . . 6 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥)))) |
20 | elxrge0 13384 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥))) | |
21 | 19, 20 | bitr4di 288 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,]+∞))) |
22 | 21 | ralbidva 3168 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
23 | 5, 16, 22 | 3bitrd 304 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
24 | 23 | biimpa 477 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞)) |
25 | ffnfv 7071 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) | |
26 | 2, 24, 25 | sylanbrc 583 | 1 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 Vcvv 3446 ⊆ wss 3913 {csn 4591 class class class wbr 5110 × cxp 5636 Fn wfn 6496 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 ∘r cofr 7621 ℂcc 11058 ℝcr 11059 0cc0 11060 +∞cpnf 11195 ℝ*cxr 11197 ≤ cle 11199 [,]cicc 13277 0𝑝c0p 25070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11116 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-i2m1 11128 ax-rnegex 11131 ax-cnre 11133 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-ofr 7623 df-pnf 11200 df-mnf 11201 df-xr 11202 df-ltxr 11203 df-le 11204 df-icc 13281 df-0p 25071 |
This theorem is referenced by: itg2itg1 25138 |
Copyright terms: Public domain | W3C validator |