| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0f | Structured version Visualization version GIF version | ||
| Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| xrge0f | ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 Fn ℝ) |
| 3 | ax-resscn 11070 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ) |
| 5 | 4, 1 | 0pledm 25602 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ (ℝ × {0}) ∘r ≤ 𝐹)) |
| 6 | 0re 11121 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 7 | fnconstg 6716 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
| 8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ) |
| 9 | reex 11104 | . . . . . 6 ⊢ ℝ ∈ V | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
| 11 | inidm 4176 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 12 | c0ex 11113 | . . . . . . 7 ⊢ 0 ∈ V | |
| 13 | 12 | fvconst2 7144 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0) |
| 15 | eqidd 2734 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 16 | 8, 1, 10, 10, 11, 14, 15 | ofrfval 7626 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 17 | ffvelcdm 7020 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
| 18 | 17 | rexrd 11169 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ*) |
| 19 | 18 | biantrurd 532 | . . . . . 6 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥)))) |
| 20 | elxrge0 13359 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 22 | 21 | ralbidva 3154 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 23 | 5, 16, 22 | 3bitrd 305 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 24 | 23 | biimpa 476 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 25 | ffnfv 7058 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) | |
| 26 | 2, 24, 25 | sylanbrc 583 | 1 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 {csn 4575 class class class wbr 5093 × cxp 5617 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘r cofr 7615 ℂcc 11011 ℝcr 11012 0cc0 11013 +∞cpnf 11150 ℝ*cxr 11152 ≤ cle 11154 [,]cicc 13250 0𝑝c0p 25598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-i2m1 11081 ax-rnegex 11084 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-ofr 7617 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-icc 13254 df-0p 25599 |
| This theorem is referenced by: itg2itg1 25665 |
| Copyright terms: Public domain | W3C validator |