MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0f Structured version   Visualization version   GIF version

Theorem xrge0f 25047
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
xrge0f ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))

Proof of Theorem xrge0f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6665 . . 3 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
21adantr 481 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
3 ax-resscn 11066 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ)
54, 10pledm 24988 . . . 4 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ (ℝ × {0}) ∘r𝐹))
6 0re 11115 . . . . . 6 0 ∈ ℝ
7 fnconstg 6727 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
86, 7mp1i 13 . . . . 5 (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ)
9 reex 11100 . . . . . 6 ℝ ∈ V
109a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
11 inidm 4176 . . . . 5 (ℝ ∩ ℝ) = ℝ
12 c0ex 11107 . . . . . . 7 0 ∈ V
1312fvconst2 7149 . . . . . 6 (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0)
1413adantl 482 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0)
15 eqidd 2738 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
168, 1, 10, 10, 11, 14, 15ofrfval 7619 . . . 4 (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
17 ffvelcdm 7029 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1817rexrd 11163 . . . . . . 7 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1918biantrurd 533 . . . . . 6 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥))))
20 elxrge0 13328 . . . . . 6 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
2119, 20bitr4di 288 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,]+∞)))
2221ralbidva 3170 . . . 4 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
235, 16, 223bitrd 304 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
2423biimpa 477 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞))
25 ffnfv 7062 . 2 (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
262, 24, 25sylanbrc 583 1 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3062  Vcvv 3443  wss 3908  {csn 4584   class class class wbr 5103   × cxp 5629   Fn wfn 6488  wf 6489  cfv 6493  (class class class)co 7351  r cofr 7608  cc 11007  cr 11008  0cc0 11009  +∞cpnf 11144  *cxr 11146  cle 11148  [,]cicc 13221  0𝑝c0p 24984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-i2m1 11077  ax-rnegex 11080  ax-cnre 11082
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-ofr 7610  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-icc 13225  df-0p 24985
This theorem is referenced by:  itg2itg1  25052
  Copyright terms: Public domain W3C validator