MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0f Structured version   Visualization version   GIF version

Theorem xrge0f 25657
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
xrge0f ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))

Proof of Theorem xrge0f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6651 . . 3 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
21adantr 480 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
3 ax-resscn 11060 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ)
54, 10pledm 25599 . . . 4 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ (ℝ × {0}) ∘r𝐹))
6 0re 11111 . . . . . 6 0 ∈ ℝ
7 fnconstg 6711 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
86, 7mp1i 13 . . . . 5 (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ)
9 reex 11094 . . . . . 6 ℝ ∈ V
109a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
11 inidm 4177 . . . . 5 (ℝ ∩ ℝ) = ℝ
12 c0ex 11103 . . . . . . 7 0 ∈ V
1312fvconst2 7138 . . . . . 6 (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0)
1413adantl 481 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0)
15 eqidd 2732 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
168, 1, 10, 10, 11, 14, 15ofrfval 7620 . . . 4 (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
17 ffvelcdm 7014 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1817rexrd 11159 . . . . . . 7 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1918biantrurd 532 . . . . . 6 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥))))
20 elxrge0 13354 . . . . . 6 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
2119, 20bitr4di 289 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,]+∞)))
2221ralbidva 3153 . . . 4 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
235, 16, 223bitrd 305 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
2423biimpa 476 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞))
25 ffnfv 7052 . 2 (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
262, 24, 25sylanbrc 583 1 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  {csn 4576   class class class wbr 5091   × cxp 5614   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  r cofr 7609  cc 11001  cr 11002  0cc0 11003  +∞cpnf 11140  *cxr 11142  cle 11144  [,]cicc 13245  0𝑝c0p 25595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-i2m1 11071  ax-rnegex 11074  ax-cnre 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ofr 7611  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-icc 13249  df-0p 25596
This theorem is referenced by:  itg2itg1  25662
  Copyright terms: Public domain W3C validator