| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0f | Structured version Visualization version GIF version | ||
| Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| xrge0f | ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 Fn ℝ) |
| 3 | ax-resscn 11085 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ) |
| 5 | 4, 1 | 0pledm 25590 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ (ℝ × {0}) ∘r ≤ 𝐹)) |
| 6 | 0re 11136 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 7 | fnconstg 6716 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
| 8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ) |
| 9 | reex 11119 | . . . . . 6 ⊢ ℝ ∈ V | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
| 11 | inidm 4180 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 12 | c0ex 11128 | . . . . . . 7 ⊢ 0 ∈ V | |
| 13 | 12 | fvconst2 7144 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0) |
| 15 | eqidd 2730 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 16 | 8, 1, 10, 10, 11, 14, 15 | ofrfval 7627 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 17 | ffvelcdm 7019 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
| 18 | 17 | rexrd 11184 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ*) |
| 19 | 18 | biantrurd 532 | . . . . . 6 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥)))) |
| 20 | elxrge0 13378 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 22 | 21 | ralbidva 3150 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 23 | 5, 16, 22 | 3bitrd 305 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
| 24 | 23 | biimpa 476 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 25 | ffnfv 7057 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) | |
| 26 | 2, 24, 25 | sylanbrc 583 | 1 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 {csn 4579 class class class wbr 5095 × cxp 5621 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘r cofr 7616 ℂcc 11026 ℝcr 11027 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 [,]cicc 13269 0𝑝c0p 25586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-i2m1 11096 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-ofr 7618 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 df-0p 25587 |
| This theorem is referenced by: itg2itg1 25653 |
| Copyright terms: Public domain | W3C validator |