MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0f Structured version   Visualization version   GIF version

Theorem xrge0f 24331
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
xrge0f ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))

Proof of Theorem xrge0f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6513 . . 3 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
21adantr 483 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
3 ax-resscn 10593 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ)
54, 10pledm 24273 . . . 4 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ (ℝ × {0}) ∘r𝐹))
6 0re 10642 . . . . . 6 0 ∈ ℝ
7 fnconstg 6566 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
86, 7mp1i 13 . . . . 5 (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ)
9 reex 10627 . . . . . 6 ℝ ∈ V
109a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
11 inidm 4194 . . . . 5 (ℝ ∩ ℝ) = ℝ
12 c0ex 10634 . . . . . . 7 0 ∈ V
1312fvconst2 6965 . . . . . 6 (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0)
1413adantl 484 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0)
15 eqidd 2822 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
168, 1, 10, 10, 11, 14, 15ofrfval 7416 . . . 4 (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
17 ffvelrn 6848 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1817rexrd 10690 . . . . . . 7 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1918biantrurd 535 . . . . . 6 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥))))
20 elxrge0 12844 . . . . . 6 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
2119, 20syl6bbr 291 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,]+∞)))
2221ralbidva 3196 . . . 4 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
235, 16, 223bitrd 307 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
2423biimpa 479 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞))
25 ffnfv 6881 . 2 (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
262, 24, 25sylanbrc 585 1 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  {csn 4566   class class class wbr 5065   × cxp 5552   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  r cofr 7407  cc 10534  cr 10535  0cc0 10536  +∞cpnf 10671  *cxr 10673  cle 10675  [,]cicc 12740  0𝑝c0p 24269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-i2m1 10604  ax-rnegex 10607  ax-cnre 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-ofr 7409  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-icc 12744  df-0p 24270
This theorem is referenced by:  itg2itg1  24336
  Copyright terms: Public domain W3C validator