MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0f Structured version   Visualization version   GIF version

Theorem xrge0f 25786
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
xrge0f ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))

Proof of Theorem xrge0f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
21adantr 480 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
3 ax-resscn 11241 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ)
54, 10pledm 25727 . . . 4 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ (ℝ × {0}) ∘r𝐹))
6 0re 11292 . . . . . 6 0 ∈ ℝ
7 fnconstg 6809 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
86, 7mp1i 13 . . . . 5 (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ)
9 reex 11275 . . . . . 6 ℝ ∈ V
109a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
11 inidm 4248 . . . . 5 (ℝ ∩ ℝ) = ℝ
12 c0ex 11284 . . . . . . 7 0 ∈ V
1312fvconst2 7241 . . . . . 6 (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0)
1413adantl 481 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0)
15 eqidd 2741 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
168, 1, 10, 10, 11, 14, 15ofrfval 7724 . . . 4 (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
17 ffvelcdm 7115 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1817rexrd 11340 . . . . . . 7 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1918biantrurd 532 . . . . . 6 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥))))
20 elxrge0 13517 . . . . . 6 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
2119, 20bitr4di 289 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,]+∞)))
2221ralbidva 3182 . . . 4 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
235, 16, 223bitrd 305 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
2423biimpa 476 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞))
25 ffnfv 7153 . 2 (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
262, 24, 25sylanbrc 582 1 ((𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713  cc 11182  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323  cle 11325  [,]cicc 13410  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-i2m1 11252  ax-rnegex 11255  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ofr 7715  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414  df-0p 25724
This theorem is referenced by:  itg2itg1  25791
  Copyright terms: Public domain W3C validator