MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0f Structured version   Visualization version   GIF version

Theorem xrge0f 23789
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
xrge0f ((𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹) → 𝐹:ℝ⟶(0[,]+∞))

Proof of Theorem xrge0f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6223 . . 3 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
21adantr 472 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹) → 𝐹 Fn ℝ)
3 ax-resscn 10246 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ)
54, 10pledm 23731 . . . 4 (𝐹:ℝ⟶ℝ → (0𝑝𝑟𝐹 ↔ (ℝ × {0}) ∘𝑟𝐹))
6 0re 10295 . . . . . 6 0 ∈ ℝ
7 fnconstg 6275 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
86, 7mp1i 13 . . . . 5 (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ)
9 reex 10280 . . . . . 6 ℝ ∈ V
109a1i 11 . . . . 5 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
11 inidm 3982 . . . . 5 (ℝ ∩ ℝ) = ℝ
12 c0ex 10287 . . . . . . 7 0 ∈ V
1312fvconst2 6662 . . . . . 6 (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0)
1413adantl 473 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0)
15 eqidd 2766 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
168, 1, 10, 10, 11, 14, 15ofrfval 7103 . . . 4 (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
17 ffvelrn 6547 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1817rexrd 10343 . . . . . . 7 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1918biantrurd 528 . . . . . 6 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥))))
20 elxrge0 12485 . . . . . 6 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
2119, 20syl6bbr 280 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑥) ∈ (0[,]+∞)))
2221ralbidva 3132 . . . 4 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
235, 16, 223bitrd 296 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
2423biimpa 468 . 2 ((𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹) → ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞))
25 ffnfv 6578 . 2 (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,]+∞)))
262, 24, 25sylanbrc 578 1 ((𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹) → 𝐹:ℝ⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3732  {csn 4334   class class class wbr 4809   × cxp 5275   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑟 cofr 7094  cc 10187  cr 10188  0cc0 10189  +∞cpnf 10325  *cxr 10327  cle 10329  [,]cicc 12380  0𝑝c0p 23727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-i2m1 10257  ax-rnegex 10260  ax-cnre 10262
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-ofr 7096  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-icc 12384  df-0p 23728
This theorem is referenced by:  itg2itg1  23794
  Copyright terms: Public domain W3C validator