![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0f | Structured version Visualization version GIF version |
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
xrge0f | ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹 Fn ℝ) |
3 | ax-resscn 11241 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ) |
5 | 4, 1 | 0pledm 25727 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ (ℝ × {0}) ∘r ≤ 𝐹)) |
6 | 0re 11292 | . . . . . 6 ⊢ 0 ∈ ℝ | |
7 | fnconstg 6809 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ) |
9 | reex 11275 | . . . . . 6 ⊢ ℝ ∈ V | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
11 | inidm 4248 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
12 | c0ex 11284 | . . . . . . 7 ⊢ 0 ∈ V | |
13 | 12 | fvconst2 7241 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0) |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0) |
15 | eqidd 2741 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
16 | 8, 1, 10, 10, 11, 14, 15 | ofrfval 7724 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
17 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
18 | 17 | rexrd 11340 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 18 | biantrurd 532 | . . . . . 6 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥)))) |
20 | elxrge0 13517 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥))) | |
21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,]+∞))) |
22 | 21 | ralbidva 3182 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
23 | 5, 16, 22 | 3bitrd 305 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
24 | 23 | biimpa 476 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞)) |
25 | ffnfv 7153 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) | |
26 | 2, 24, 25 | sylanbrc 582 | 1 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {csn 4648 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘r cofr 7713 ℂcc 11182 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 0𝑝c0p 25723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-i2m1 11252 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-ofr 7715 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 df-0p 25724 |
This theorem is referenced by: itg2itg1 25791 |
Copyright terms: Public domain | W3C validator |