MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn2 Structured version   Visualization version   GIF version

Theorem dfimafn2 6924
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6923 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
2 iunab 5015 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
31, 2eqtr4di 2782 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦})
4 df-sn 4590 . . . . 5 {(𝐹𝑥)} = {𝑦𝑦 = (𝐹𝑥)}
5 eqcom 2736 . . . . . 6 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
65abbii 2796 . . . . 5 {𝑦𝑦 = (𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
74, 6eqtri 2752 . . . 4 {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦})
98iuneq2i 4977 . 2 𝑥𝐴 {(𝐹𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦}
103, 9eqtr4di 2782 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3914  {csn 4589   ciun 4955  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  uniiccdif  25479
  Copyright terms: Public domain W3C validator