| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfimafn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| dfimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn 6923 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
| 2 | iunab 5015 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2782 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 4 | df-sn 4590 | . . . . 5 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} | |
| 5 | eqcom 2736 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 6 | 5 | abbii 2796 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 7 | 4, 6 | eqtri 2752 | . . . 4 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 9 | 8 | iuneq2i 4977 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 10 | 3, 9 | eqtr4di 2782 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3914 {csn 4589 ∪ ciun 4955 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: uniiccdif 25479 |
| Copyright terms: Public domain | W3C validator |