MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn2 Structured version   Visualization version   GIF version

Theorem dfimafn2 6885
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6884 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
2 iunab 5000 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
31, 2eqtr4di 2784 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦})
4 df-sn 4577 . . . . 5 {(𝐹𝑥)} = {𝑦𝑦 = (𝐹𝑥)}
5 eqcom 2738 . . . . . 6 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
65abbii 2798 . . . . 5 {𝑦𝑦 = (𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
74, 6eqtri 2754 . . . 4 {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦})
98iuneq2i 4963 . 2 𝑥𝐴 {(𝐹𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦}
103, 9eqtr4di 2784 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3902  {csn 4576   ciun 4941  dom cdm 5616  cima 5619  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  uniiccdif  25504
  Copyright terms: Public domain W3C validator