![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfimafn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
dfimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfimafn 6603 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
2 | iunab 4880 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | |
3 | 1, 2 | syl6eqr 2851 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
4 | df-sn 4479 | . . . . 5 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} | |
5 | eqcom 2804 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
6 | 5 | abbii 2863 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
7 | 4, 6 | eqtri 2821 | . . . 4 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
9 | 8 | iuneq2i 4851 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
10 | 3, 9 | syl6eqr 2851 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 {cab 2777 ∃wrex 3108 ⊆ wss 3865 {csn 4478 ∪ ciun 4831 dom cdm 5450 “ cima 5453 Fun wfun 6226 ‘cfv 6232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-fv 6240 |
This theorem is referenced by: uniiccdif 23866 |
Copyright terms: Public domain | W3C validator |