![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaimafn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6954. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfaimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfaimafn 46171 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) | |
2 | iunab 5053 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦} | |
3 | 1, 2 | eqtr4di 2788 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
4 | df-sn 4628 | . . . . 5 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} | |
5 | eqcom 2737 | . . . . . 6 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
6 | 5 | abbii 2800 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
7 | 4, 6 | eqtri 2758 | . . . 4 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
9 | 8 | iuneq2i 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
10 | 3, 9 | eqtr4di 2788 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ∃wrex 3068 ⊆ wss 3947 {csn 4627 ∪ ciun 4996 dom cdm 5675 “ cima 5678 Fun wfun 6536 '''cafv 46123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-aiota 46091 df-dfat 46125 df-afv 46126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |