| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaimafn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6947. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| dfaimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfaimafn 47174 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) | |
| 2 | iunab 5032 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2789 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
| 4 | df-sn 4607 | . . . . 5 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} | |
| 5 | eqcom 2743 | . . . . . 6 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
| 6 | 5 | abbii 2803 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
| 7 | 4, 6 | eqtri 2759 | . . . 4 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
| 9 | 8 | iuneq2i 4994 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
| 10 | 3, 9 | eqtr4di 2789 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 ⊆ wss 3931 {csn 4606 ∪ ciun 4972 dom cdm 5659 “ cima 5662 Fun wfun 6530 '''cafv 47126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-aiota 47094 df-dfat 47128 df-afv 47129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |