Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaimafn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6717. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfaimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfaimafn 44111 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) | |
2 | iunab 4940 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦} | |
3 | 1, 2 | eqtr4di 2811 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
4 | df-sn 4523 | . . . . 5 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} | |
5 | eqcom 2765 | . . . . . 6 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
6 | 5 | abbii 2823 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
7 | 4, 6 | eqtri 2781 | . . . 4 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
9 | 8 | iuneq2i 4904 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
10 | 3, 9 | eqtr4di 2811 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 ⊆ wss 3858 {csn 4522 ∪ ciun 4883 dom cdm 5524 “ cima 5527 Fun wfun 6329 '''cafv 44063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-fv 6343 df-aiota 44030 df-dfat 44065 df-afv 44066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |