Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfaimafn2 Structured version   Visualization version   GIF version

Theorem dfaimafn2 47151
Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6890. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfaimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹'''𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfaimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfaimafn 47150 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦})
2 iunab 5003 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦}
31, 2eqtr4di 2782 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦})
4 df-sn 4580 . . . . 5 {(𝐹'''𝑥)} = {𝑦𝑦 = (𝐹'''𝑥)}
5 eqcom 2736 . . . . . 6 (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦)
65abbii 2796 . . . . 5 {𝑦𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
74, 6eqtri 2752 . . . 4 {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦})
98iuneq2i 4966 . 2 𝑥𝐴 {(𝐹'''𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
103, 9eqtr4di 2782 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹'''𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3905  {csn 4579   ciun 4944  dom cdm 5623  cima 5626  Fun wfun 6480  '''cafv 47102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-aiota 47070  df-dfat 47104  df-afv 47105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator