MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem10 Structured version   Visualization version   GIF version

Theorem pzriprnglem10 21449
Description: Lemma 10 for pzriprng 21456: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
Assertion
Ref Expression
pzriprnglem10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))

Proof of Theorem pzriprnglem10
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
21pzriprnglem1 21440 . . . 4 𝑅 ∈ Rng
3 rnggrp 20116 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
42, 3ax-mp 5 . . 3 𝑅 ∈ Grp
5 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
6 0z 12597 . . . . . 6 0 ∈ ℤ
7 snssi 4784 . . . . . 6 (0 ∈ ℤ → {0} ⊆ ℤ)
8 xpss2 5674 . . . . . 6 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
96, 7, 8mp2b 10 . . . . 5 (ℤ × {0}) ⊆ (ℤ × ℤ)
105, 9eqsstri 4005 . . . 4 𝐼 ⊆ (ℤ × ℤ)
1110a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝐼 ⊆ (ℤ × ℤ))
12 opelxpi 5691 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ))
131pzriprnglem2 21441 . . . . 5 (Base‘𝑅) = (ℤ × ℤ)
1413eqcomi 2744 . . . 4 (ℤ × ℤ) = (Base‘𝑅)
15 pzriprng.g . . . 4 = (𝑅 ~QG 𝐼)
16 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
1714, 15, 16eqglact 19160 . . 3 ((𝑅 ∈ Grp ∧ 𝐼 ⊆ (ℤ × ℤ) ∧ ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ)) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
184, 11, 12, 17mp3an2i 1468 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
1911mptimass 6060 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼) = ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)))
20 eqid 2735 . . . . 5 (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
2120rnmpt 5937 . . . 4 ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)}
2221a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)})
235rexeqi 3304 . . . . . 6 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
24 oveq2 7411 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2524eqeq2d 2746 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2625rexxp 5822 . . . . . 6 (∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2723, 26bitri 275 . . . . 5 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2827a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2928abbidv 2801 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)} = {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)})
30 c0ex 11227 . . . . . . . 8 0 ∈ V
31 opeq2 4850 . . . . . . . . . 10 (𝑏 = 0 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 0⟩)
3231oveq2d 7419 . . . . . . . . 9 (𝑏 = 0 → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
3332eqeq2d 2746 . . . . . . . 8 (𝑏 = 0 → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩)))
3430, 33rexsn 4658 . . . . . . 7 (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
35 zringbas 21412 . . . . . . . . 9 ℤ = (Base‘ℤring)
36 zringring 21408 . . . . . . . . . 10 ring ∈ Ring
3736a1i 11 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ℤring ∈ Ring)
38 simpll 766 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑋 ∈ ℤ)
39 simplr 768 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑌 ∈ ℤ)
40 simpr 484 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
41 0zd 12598 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 0 ∈ ℤ)
4238, 40zaddcld 12699 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑋 + 𝑎) ∈ ℤ)
43 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℤ)
44 0zd 12598 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 0 ∈ ℤ)
4543, 44zaddcld 12699 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
47 zringplusg 21413 . . . . . . . . 9 + = (+g‘ℤring)
481, 35, 35, 37, 37, 38, 39, 40, 41, 42, 46, 47, 47, 16xpsadd 17586 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩)
4948eqeq2d 2746 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5034, 49bitrid 283 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5150rexbidva 3162 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5251abbidv 2801 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
53 iunab 5027 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5453eqcomi 2744 . . . . 5 {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5554a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
56 zcn 12591 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
5756adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℂ)
5857addridd 11433 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) = 𝑌)
5958opeq2d 4856 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
6059eqeq2d 2746 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ ↔ 𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩))
6160abbidv 2801 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
6261iuneq2d 4998 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
63 df-sn 4602 . . . . . . . . 9 {⟨(𝑋 + 𝑎), 𝑌⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩}
6463eqcomi 2744 . . . . . . . 8 {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩}
6564a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩})
6665iuneq2i 4989 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩}
6766a1i 11 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩})
68 velsn 4617 . . . . . . . . . 10 (𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
6968rexbii 3083 . . . . . . . . 9 (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
7042adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → (𝑋 + 𝑎) ∈ ℤ)
71 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
72 opeq1 4849 . . . . . . . . . . . . . . 15 (𝑏 = (𝑋 + 𝑎) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7372adantl 481 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7471, 73eqeq12d 2751 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩))
75 eqidd 2736 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7670, 74, 75rspcedvd 3603 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩)
7776ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
7877rexlimdva 3141 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
79 simpr 484 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
80 simpll 766 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℤ)
8179, 80zsubcld 12700 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏𝑋) ∈ ℤ)
8281adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → (𝑏𝑋) ∈ ℤ)
83 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → 𝑦 = ⟨𝑏, 𝑌⟩)
84 oveq2 7411 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑏𝑋) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8584adantl 481 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8685opeq1d 4855 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
8783, 86eqeq12d 2751 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩))
88 zcn 12591 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
8988adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑋 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℂ)
91 zcn 12591 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
9390, 92pncan3d 11595 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑋 + (𝑏𝑋)) = 𝑏)
9493eqcomd 2741 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 = (𝑋 + (𝑏𝑋)))
9594adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → 𝑏 = (𝑋 + (𝑏𝑋)))
9695opeq1d 4855 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
9782, 87, 96rspcedvd 3603 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
9897ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
9998rexlimdva 3141 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
10078, 99impbid 212 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
10169, 100bitrid 283 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
102 opeq2 4850 . . . . . . . . . . . . 13 (𝑐 = 𝑌 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑌⟩)
103102eqeq2d 2746 . . . . . . . . . . . 12 (𝑐 = 𝑌 → (𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
104103rexsng 4652 . . . . . . . . . . 11 (𝑌 ∈ ℤ → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
105104adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
106105bicomd 223 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
107106rexbidv 3164 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
108101, 107bitrd 279 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
109 eliun 4971 . . . . . . 7 (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩})
110 elxp2 5678 . . . . . . 7 (𝑦 ∈ (ℤ × {𝑌}) ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩)
111108, 109, 1103bitr4g 314 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 ∈ (ℤ × {𝑌})))
112111eqrdv 2733 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} = (ℤ × {𝑌}))
11362, 67, 1123eqtrd 2774 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = (ℤ × {𝑌}))
11452, 55, 1133eqtrd 2774 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = (ℤ × {𝑌}))
11522, 29, 1143eqtrd 2774 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (ℤ × {𝑌}))
11618, 19, 1153eqtrd 2774 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  wss 3926  {csn 4601  cop 4607   ciun 4967  cmpt 5201   × cxp 5652  ran crn 5655  cima 5657  cfv 6530  (class class class)co 7403  [cec 8715  cc 11125  0cc0 11127   + caddc 11130  cmin 11464  cz 12586  Basecbs 17226  s cress 17249  +gcplusg 17269   ×s cxps 17518  Grpcgrp 18914   ~QG cqg 19103  Rngcrng 20110  1rcur 20139  Ringcrg 20191  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-imas 17520  df-xps 17522  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-subg 19104  df-eqg 19106  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  pzriprnglem11  21450  pzriprnglem12  21451
  Copyright terms: Public domain W3C validator