MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem10 Structured version   Visualization version   GIF version

Theorem pzriprnglem10 21427
Description: Lemma 10 for pzriprng 21434: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
Assertion
Ref Expression
pzriprnglem10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))

Proof of Theorem pzriprnglem10
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
21pzriprnglem1 21418 . . . 4 𝑅 ∈ Rng
3 rnggrp 20076 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
42, 3ax-mp 5 . . 3 𝑅 ∈ Grp
5 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
6 0z 12479 . . . . . 6 0 ∈ ℤ
7 snssi 4757 . . . . . 6 (0 ∈ ℤ → {0} ⊆ ℤ)
8 xpss2 5634 . . . . . 6 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
96, 7, 8mp2b 10 . . . . 5 (ℤ × {0}) ⊆ (ℤ × ℤ)
105, 9eqsstri 3976 . . . 4 𝐼 ⊆ (ℤ × ℤ)
1110a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝐼 ⊆ (ℤ × ℤ))
12 opelxpi 5651 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ))
131pzriprnglem2 21419 . . . . 5 (Base‘𝑅) = (ℤ × ℤ)
1413eqcomi 2740 . . . 4 (ℤ × ℤ) = (Base‘𝑅)
15 pzriprng.g . . . 4 = (𝑅 ~QG 𝐼)
16 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
1714, 15, 16eqglact 19091 . . 3 ((𝑅 ∈ Grp ∧ 𝐼 ⊆ (ℤ × ℤ) ∧ ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ)) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
184, 11, 12, 17mp3an2i 1468 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
1911mptimass 6021 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼) = ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)))
20 eqid 2731 . . . . 5 (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
2120rnmpt 5896 . . . 4 ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)}
2221a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)})
235rexeqi 3291 . . . . . 6 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
24 oveq2 7354 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2524eqeq2d 2742 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2625rexxp 5781 . . . . . 6 (∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2723, 26bitri 275 . . . . 5 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2827a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2928abbidv 2797 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)} = {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)})
30 c0ex 11106 . . . . . . . 8 0 ∈ V
31 opeq2 4823 . . . . . . . . . 10 (𝑏 = 0 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 0⟩)
3231oveq2d 7362 . . . . . . . . 9 (𝑏 = 0 → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
3332eqeq2d 2742 . . . . . . . 8 (𝑏 = 0 → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩)))
3430, 33rexsn 4632 . . . . . . 7 (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
35 zringbas 21390 . . . . . . . . 9 ℤ = (Base‘ℤring)
36 zringring 21386 . . . . . . . . . 10 ring ∈ Ring
3736a1i 11 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ℤring ∈ Ring)
38 simpll 766 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑋 ∈ ℤ)
39 simplr 768 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑌 ∈ ℤ)
40 simpr 484 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
41 0zd 12480 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 0 ∈ ℤ)
4238, 40zaddcld 12581 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑋 + 𝑎) ∈ ℤ)
43 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℤ)
44 0zd 12480 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 0 ∈ ℤ)
4543, 44zaddcld 12581 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
47 zringplusg 21391 . . . . . . . . 9 + = (+g‘ℤring)
481, 35, 35, 37, 37, 38, 39, 40, 41, 42, 46, 47, 47, 16xpsadd 17478 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩)
4948eqeq2d 2742 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5034, 49bitrid 283 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5150rexbidva 3154 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5251abbidv 2797 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
53 iunab 4998 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5453eqcomi 2740 . . . . 5 {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5554a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
56 zcn 12473 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
5756adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℂ)
5857addridd 11313 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) = 𝑌)
5958opeq2d 4829 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
6059eqeq2d 2742 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ ↔ 𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩))
6160abbidv 2797 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
6261iuneq2d 4970 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
63 df-sn 4574 . . . . . . . . 9 {⟨(𝑋 + 𝑎), 𝑌⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩}
6463eqcomi 2740 . . . . . . . 8 {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩}
6564a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩})
6665iuneq2i 4961 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩}
6766a1i 11 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩})
68 velsn 4589 . . . . . . . . . 10 (𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
6968rexbii 3079 . . . . . . . . 9 (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
7042adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → (𝑋 + 𝑎) ∈ ℤ)
71 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
72 opeq1 4822 . . . . . . . . . . . . . . 15 (𝑏 = (𝑋 + 𝑎) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7372adantl 481 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7471, 73eqeq12d 2747 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩))
75 eqidd 2732 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7670, 74, 75rspcedvd 3574 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩)
7776ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
7877rexlimdva 3133 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
79 simpr 484 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
80 simpll 766 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℤ)
8179, 80zsubcld 12582 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏𝑋) ∈ ℤ)
8281adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → (𝑏𝑋) ∈ ℤ)
83 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → 𝑦 = ⟨𝑏, 𝑌⟩)
84 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑏𝑋) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8584adantl 481 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8685opeq1d 4828 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
8783, 86eqeq12d 2747 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩))
88 zcn 12473 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
8988adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑋 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℂ)
91 zcn 12473 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
9390, 92pncan3d 11475 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑋 + (𝑏𝑋)) = 𝑏)
9493eqcomd 2737 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 = (𝑋 + (𝑏𝑋)))
9594adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → 𝑏 = (𝑋 + (𝑏𝑋)))
9695opeq1d 4828 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
9782, 87, 96rspcedvd 3574 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
9897ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
9998rexlimdva 3133 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
10078, 99impbid 212 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
10169, 100bitrid 283 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
102 opeq2 4823 . . . . . . . . . . . . 13 (𝑐 = 𝑌 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑌⟩)
103102eqeq2d 2742 . . . . . . . . . . . 12 (𝑐 = 𝑌 → (𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
104103rexsng 4626 . . . . . . . . . . 11 (𝑌 ∈ ℤ → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
105104adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
106105bicomd 223 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
107106rexbidv 3156 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
108101, 107bitrd 279 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
109 eliun 4943 . . . . . . 7 (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩})
110 elxp2 5638 . . . . . . 7 (𝑦 ∈ (ℤ × {𝑌}) ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩)
111108, 109, 1103bitr4g 314 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 ∈ (ℤ × {𝑌})))
112111eqrdv 2729 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} = (ℤ × {𝑌}))
11362, 67, 1123eqtrd 2770 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = (ℤ × {𝑌}))
11452, 55, 1133eqtrd 2770 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = (ℤ × {𝑌}))
11522, 29, 1143eqtrd 2770 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (ℤ × {𝑌}))
11618, 19, 1153eqtrd 2770 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3897  {csn 4573  cop 4579   ciun 4939  cmpt 5170   × cxp 5612  ran crn 5615  cima 5617  cfv 6481  (class class class)co 7346  [cec 8620  cc 11004  0cc0 11006   + caddc 11009  cmin 11344  cz 12468  Basecbs 17120  s cress 17141  +gcplusg 17161   ×s cxps 17410  Grpcgrp 18846   ~QG cqg 19035  Rngcrng 20070  1rcur 20099  Ringcrg 20151  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-eqg 19038  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  pzriprnglem11  21428  pzriprnglem12  21429
  Copyright terms: Public domain W3C validator