MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem10 Structured version   Visualization version   GIF version

Theorem pzriprnglem10 21432
Description: Lemma 10 for pzriprng 21439: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
Assertion
Ref Expression
pzriprnglem10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))

Proof of Theorem pzriprnglem10
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
21pzriprnglem1 21423 . . . 4 𝑅 ∈ Rng
3 rnggrp 20078 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
42, 3ax-mp 5 . . 3 𝑅 ∈ Grp
5 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
6 0z 12516 . . . . . 6 0 ∈ ℤ
7 snssi 4768 . . . . . 6 (0 ∈ ℤ → {0} ⊆ ℤ)
8 xpss2 5651 . . . . . 6 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
96, 7, 8mp2b 10 . . . . 5 (ℤ × {0}) ⊆ (ℤ × ℤ)
105, 9eqsstri 3990 . . . 4 𝐼 ⊆ (ℤ × ℤ)
1110a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝐼 ⊆ (ℤ × ℤ))
12 opelxpi 5668 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ))
131pzriprnglem2 21424 . . . . 5 (Base‘𝑅) = (ℤ × ℤ)
1413eqcomi 2738 . . . 4 (ℤ × ℤ) = (Base‘𝑅)
15 pzriprng.g . . . 4 = (𝑅 ~QG 𝐼)
16 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
1714, 15, 16eqglact 19093 . . 3 ((𝑅 ∈ Grp ∧ 𝐼 ⊆ (ℤ × ℤ) ∧ ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ)) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
184, 11, 12, 17mp3an2i 1468 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
1911mptimass 6033 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼) = ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)))
20 eqid 2729 . . . . 5 (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
2120rnmpt 5910 . . . 4 ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)}
2221a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)})
235rexeqi 3295 . . . . . 6 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
24 oveq2 7377 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2524eqeq2d 2740 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2625rexxp 5796 . . . . . 6 (∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2723, 26bitri 275 . . . . 5 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2827a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2928abbidv 2795 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)} = {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)})
30 c0ex 11144 . . . . . . . 8 0 ∈ V
31 opeq2 4834 . . . . . . . . . 10 (𝑏 = 0 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 0⟩)
3231oveq2d 7385 . . . . . . . . 9 (𝑏 = 0 → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
3332eqeq2d 2740 . . . . . . . 8 (𝑏 = 0 → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩)))
3430, 33rexsn 4642 . . . . . . 7 (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
35 zringbas 21395 . . . . . . . . 9 ℤ = (Base‘ℤring)
36 zringring 21391 . . . . . . . . . 10 ring ∈ Ring
3736a1i 11 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ℤring ∈ Ring)
38 simpll 766 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑋 ∈ ℤ)
39 simplr 768 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑌 ∈ ℤ)
40 simpr 484 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
41 0zd 12517 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 0 ∈ ℤ)
4238, 40zaddcld 12618 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑋 + 𝑎) ∈ ℤ)
43 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℤ)
44 0zd 12517 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 0 ∈ ℤ)
4543, 44zaddcld 12618 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
47 zringplusg 21396 . . . . . . . . 9 + = (+g‘ℤring)
481, 35, 35, 37, 37, 38, 39, 40, 41, 42, 46, 47, 47, 16xpsadd 17513 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩)
4948eqeq2d 2740 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5034, 49bitrid 283 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5150rexbidva 3155 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5251abbidv 2795 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
53 iunab 5010 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5453eqcomi 2738 . . . . 5 {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5554a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
56 zcn 12510 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
5756adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℂ)
5857addridd 11350 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) = 𝑌)
5958opeq2d 4840 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
6059eqeq2d 2740 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ ↔ 𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩))
6160abbidv 2795 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
6261iuneq2d 4982 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
63 df-sn 4586 . . . . . . . . 9 {⟨(𝑋 + 𝑎), 𝑌⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩}
6463eqcomi 2738 . . . . . . . 8 {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩}
6564a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩})
6665iuneq2i 4973 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩}
6766a1i 11 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩})
68 velsn 4601 . . . . . . . . . 10 (𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
6968rexbii 3076 . . . . . . . . 9 (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
7042adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → (𝑋 + 𝑎) ∈ ℤ)
71 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
72 opeq1 4833 . . . . . . . . . . . . . . 15 (𝑏 = (𝑋 + 𝑎) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7372adantl 481 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7471, 73eqeq12d 2745 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩))
75 eqidd 2730 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7670, 74, 75rspcedvd 3587 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩)
7776ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
7877rexlimdva 3134 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
79 simpr 484 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
80 simpll 766 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℤ)
8179, 80zsubcld 12619 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏𝑋) ∈ ℤ)
8281adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → (𝑏𝑋) ∈ ℤ)
83 simplr 768 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → 𝑦 = ⟨𝑏, 𝑌⟩)
84 oveq2 7377 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑏𝑋) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8584adantl 481 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8685opeq1d 4839 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
8783, 86eqeq12d 2745 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩))
88 zcn 12510 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
8988adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑋 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℂ)
91 zcn 12510 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
9390, 92pncan3d 11512 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑋 + (𝑏𝑋)) = 𝑏)
9493eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 = (𝑋 + (𝑏𝑋)))
9594adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → 𝑏 = (𝑋 + (𝑏𝑋)))
9695opeq1d 4839 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
9782, 87, 96rspcedvd 3587 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
9897ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
9998rexlimdva 3134 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
10078, 99impbid 212 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
10169, 100bitrid 283 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
102 opeq2 4834 . . . . . . . . . . . . 13 (𝑐 = 𝑌 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑌⟩)
103102eqeq2d 2740 . . . . . . . . . . . 12 (𝑐 = 𝑌 → (𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
104103rexsng 4636 . . . . . . . . . . 11 (𝑌 ∈ ℤ → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
105104adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
106105bicomd 223 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
107106rexbidv 3157 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
108101, 107bitrd 279 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
109 eliun 4955 . . . . . . 7 (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩})
110 elxp2 5655 . . . . . . 7 (𝑦 ∈ (ℤ × {𝑌}) ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩)
111108, 109, 1103bitr4g 314 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 ∈ (ℤ × {𝑌})))
112111eqrdv 2727 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} = (ℤ × {𝑌}))
11362, 67, 1123eqtrd 2768 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = (ℤ × {𝑌}))
11452, 55, 1133eqtrd 2768 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = (ℤ × {𝑌}))
11522, 29, 1143eqtrd 2768 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (ℤ × {𝑌}))
11618, 19, 1153eqtrd 2768 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3911  {csn 4585  cop 4591   ciun 4951  cmpt 5183   × cxp 5629  ran crn 5632  cima 5634  cfv 6499  (class class class)co 7369  [cec 8646  cc 11042  0cc0 11044   + caddc 11047  cmin 11381  cz 12505  Basecbs 17155  s cress 17176  +gcplusg 17196   ×s cxps 17445  Grpcgrp 18847   ~QG cqg 19036  Rngcrng 20072  1rcur 20101  Ringcrg 20153  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-xps 17449  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-eqg 19039  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  pzriprnglem11  21433  pzriprnglem12  21434
  Copyright terms: Public domain W3C validator