MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem10 Structured version   Visualization version   GIF version

Theorem pzriprnglem10 21518
Description: Lemma 10 for pzriprng 21525: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
Assertion
Ref Expression
pzriprnglem10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))

Proof of Theorem pzriprnglem10
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
21pzriprnglem1 21509 . . . 4 𝑅 ∈ Rng
3 rnggrp 20175 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
42, 3ax-mp 5 . . 3 𝑅 ∈ Grp
5 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
6 0z 12621 . . . . . 6 0 ∈ ℤ
7 snssi 4812 . . . . . 6 (0 ∈ ℤ → {0} ⊆ ℤ)
8 xpss2 5708 . . . . . 6 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
96, 7, 8mp2b 10 . . . . 5 (ℤ × {0}) ⊆ (ℤ × ℤ)
105, 9eqsstri 4029 . . . 4 𝐼 ⊆ (ℤ × ℤ)
1110a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝐼 ⊆ (ℤ × ℤ))
12 opelxpi 5725 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ))
131pzriprnglem2 21510 . . . . 5 (Base‘𝑅) = (ℤ × ℤ)
1413eqcomi 2743 . . . 4 (ℤ × ℤ) = (Base‘𝑅)
15 pzriprng.g . . . 4 = (𝑅 ~QG 𝐼)
16 eqid 2734 . . . 4 (+g𝑅) = (+g𝑅)
1714, 15, 16eqglact 19209 . . 3 ((𝑅 ∈ Grp ∧ 𝐼 ⊆ (ℤ × ℤ) ∧ ⟨𝑋, 𝑌⟩ ∈ (ℤ × ℤ)) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
184, 11, 12, 17mp3an2i 1465 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼))
1911mptimass 6092 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑥 ∈ (ℤ × ℤ) ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) “ 𝐼) = ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)))
20 eqid 2734 . . . . 5 (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
2120rnmpt 5970 . . . 4 ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)}
2221a1i 11 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)})
235rexeqi 3322 . . . . . 6 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥))
24 oveq2 7438 . . . . . . . 8 (𝑥 = ⟨𝑎, 𝑏⟩ → (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2524eqeq2d 2745 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2625rexxp 5855 . . . . . 6 (∃𝑥 ∈ (ℤ × {0})𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2723, 26bitri 275 . . . . 5 (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩))
2827a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)))
2928abbidv 2805 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑥𝐼 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)} = {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)})
30 c0ex 11252 . . . . . . . 8 0 ∈ V
31 opeq2 4878 . . . . . . . . . 10 (𝑏 = 0 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 0⟩)
3231oveq2d 7446 . . . . . . . . 9 (𝑏 = 0 → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
3332eqeq2d 2745 . . . . . . . 8 (𝑏 = 0 → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩)))
3430, 33rexsn 4686 . . . . . . 7 (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩))
35 zringbas 21481 . . . . . . . . 9 ℤ = (Base‘ℤring)
36 zringring 21477 . . . . . . . . . 10 ring ∈ Ring
3736a1i 11 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ℤring ∈ Ring)
38 simpll 767 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑋 ∈ ℤ)
39 simplr 769 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑌 ∈ ℤ)
40 simpr 484 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
41 0zd 12622 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 0 ∈ ℤ)
4238, 40zaddcld 12723 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑋 + 𝑎) ∈ ℤ)
43 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℤ)
44 0zd 12622 . . . . . . . . . . 11 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 0 ∈ ℤ)
4543, 44zaddcld 12723 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑌 + 0) ∈ ℤ)
47 zringplusg 21482 . . . . . . . . 9 + = (+g‘ℤring)
481, 35, 35, 37, 37, 38, 39, 40, 41, 42, 46, 47, 47, 16xpsadd 17620 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩)
4948eqeq2d 2745 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 0⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5034, 49bitrid 283 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5150rexbidva 3174 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩) ↔ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩))
5251abbidv 2805 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
53 iunab 5055 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5453eqcomi 2743 . . . . 5 {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩}
5554a1i 11 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ 𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩})
56 zcn 12615 . . . . . . . . . . 11 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
5756adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑌 ∈ ℂ)
5857addridd 11458 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 + 0) = 𝑌)
5958opeq2d 4884 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
6059eqeq2d 2745 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩ ↔ 𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩))
6160abbidv 2805 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
6261iuneq2d 5026 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩})
63 df-sn 4631 . . . . . . . . 9 {⟨(𝑋 + 𝑎), 𝑌⟩} = {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩}
6463eqcomi 2743 . . . . . . . 8 {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩}
6564a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = {⟨(𝑋 + 𝑎), 𝑌⟩})
6665iuneq2i 5017 . . . . . 6 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩}
6766a1i 11 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), 𝑌⟩} = 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩})
68 velsn 4646 . . . . . . . . . 10 (𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
6968rexbii 3091 . . . . . . . . 9 (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
7042adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → (𝑋 + 𝑎) ∈ ℤ)
71 simplr 769 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
72 opeq1 4877 . . . . . . . . . . . . . . 15 (𝑏 = (𝑋 + 𝑎) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7372adantl 481 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7471, 73eqeq12d 2750 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) ∧ 𝑏 = (𝑋 + 𝑎)) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩))
75 eqidd 2735 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + 𝑎), 𝑌⟩)
7670, 74, 75rspcedvd 3623 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) ∧ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩) → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩)
7776ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
7877rexlimdva 3152 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ → ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
79 simpr 484 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
80 simpll 767 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℤ)
8179, 80zsubcld 12724 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏𝑋) ∈ ℤ)
8281adantr 480 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → (𝑏𝑋) ∈ ℤ)
83 simplr 769 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → 𝑦 = ⟨𝑏, 𝑌⟩)
84 oveq2 7438 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑏𝑋) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8584adantl 481 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑋 + 𝑎) = (𝑋 + (𝑏𝑋)))
8685opeq1d 4883 . . . . . . . . . . . . . 14 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → ⟨(𝑋 + 𝑎), 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
8783, 86eqeq12d 2750 . . . . . . . . . . . . 13 (((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) ∧ 𝑎 = (𝑏𝑋)) → (𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩))
88 zcn 12615 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
8988adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑋 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ ℂ)
91 zcn 12615 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
9390, 92pncan3d 11620 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑋 + (𝑏𝑋)) = 𝑏)
9493eqcomd 2740 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 = (𝑋 + (𝑏𝑋)))
9594adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → 𝑏 = (𝑋 + (𝑏𝑋)))
9695opeq1d 4883 . . . . . . . . . . . . 13 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ⟨𝑏, 𝑌⟩ = ⟨(𝑋 + (𝑏𝑋)), 𝑌⟩)
9782, 87, 96rspcedvd 3623 . . . . . . . . . . . 12 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 𝑌⟩) → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩)
9897ex 412 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
9998rexlimdva 3152 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ → ∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩))
10078, 99impbid 212 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 = ⟨(𝑋 + 𝑎), 𝑌⟩ ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
10169, 100bitrid 283 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩))
102 opeq2 4878 . . . . . . . . . . . . 13 (𝑐 = 𝑌 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑌⟩)
103102eqeq2d 2745 . . . . . . . . . . . 12 (𝑐 = 𝑌 → (𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
104103rexsng 4680 . . . . . . . . . . 11 (𝑌 ∈ ℤ → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
105104adantl 481 . . . . . . . . . 10 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩ ↔ 𝑦 = ⟨𝑏, 𝑌⟩))
106105bicomd 223 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
107106rexbidv 3176 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 𝑌⟩ ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
108101, 107bitrd 279 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩))
109 eliun 4999 . . . . . . 7 (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ ∃𝑎 ∈ ℤ 𝑦 ∈ {⟨(𝑋 + 𝑎), 𝑌⟩})
110 elxp2 5712 . . . . . . 7 (𝑦 ∈ (ℤ × {𝑌}) ↔ ∃𝑏 ∈ ℤ ∃𝑐 ∈ {𝑌}𝑦 = ⟨𝑏, 𝑐⟩)
111108, 109, 1103bitr4g 314 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑦 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} ↔ 𝑦 ∈ (ℤ × {𝑌})))
112111eqrdv 2732 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {⟨(𝑋 + 𝑎), 𝑌⟩} = (ℤ × {𝑌}))
11362, 67, 1123eqtrd 2778 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → 𝑎 ∈ ℤ {𝑒𝑒 = ⟨(𝑋 + 𝑎), (𝑌 + 0)⟩} = (ℤ × {𝑌}))
11452, 55, 1133eqtrd 2778 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → {𝑒 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ {0}𝑒 = (⟨𝑋, 𝑌⟩(+g𝑅)⟨𝑎, 𝑏⟩)} = (ℤ × {𝑌}))
11522, 29, 1143eqtrd 2778 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ran (𝑥𝐼 ↦ (⟨𝑋, 𝑌⟩(+g𝑅)𝑥)) = (ℤ × {𝑌}))
11618, 19, 1153eqtrd 2778 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [⟨𝑋, 𝑌⟩] = (ℤ × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  wss 3962  {csn 4630  cop 4636   ciun 4995  cmpt 5230   × cxp 5686  ran crn 5689  cima 5691  cfv 6562  (class class class)co 7430  [cec 8741  cc 11150  0cc0 11152   + caddc 11155  cmin 11489  cz 12610  Basecbs 17244  s cress 17273  +gcplusg 17297   ×s cxps 17552  Grpcgrp 18963   ~QG cqg 19152  Rngcrng 20169  1rcur 20198  Ringcrg 20250  ringczring 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-prds 17493  df-imas 17554  df-xps 17556  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-eqg 19155  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-cnfld 21382  df-zring 21475
This theorem is referenced by:  pzriprnglem11  21519  pzriprnglem12  21520
  Copyright terms: Public domain W3C validator