Step | Hyp | Ref
| Expression |
1 | | pzriprng.r |
. . . . 5
β’ π
= (β€ring
Γs β€ring) |
2 | 1 | pzriprnglem1 46805 |
. . . 4
β’ π
β Rng |
3 | | rnggrp 46654 |
. . . 4
β’ (π
β Rng β π
β Grp) |
4 | 2, 3 | ax-mp 5 |
. . 3
β’ π
β Grp |
5 | | pzriprng.i |
. . . . 5
β’ πΌ = (β€ Γ
{0}) |
6 | | 0z 12569 |
. . . . . 6
β’ 0 β
β€ |
7 | | snssi 4812 |
. . . . . 6
β’ (0 β
β€ β {0} β β€) |
8 | | xpss2 5697 |
. . . . . 6
β’ ({0}
β β€ β (β€ Γ {0}) β (β€ Γ
β€)) |
9 | 6, 7, 8 | mp2b 10 |
. . . . 5
β’ (β€
Γ {0}) β (β€ Γ β€) |
10 | 5, 9 | eqsstri 4017 |
. . . 4
β’ πΌ β (β€ Γ
β€) |
11 | 10 | a1i 11 |
. . 3
β’ ((π β β€ β§ π β β€) β πΌ β (β€ Γ
β€)) |
12 | | opelxpi 5714 |
. . 3
β’ ((π β β€ β§ π β β€) β
β¨π, πβ© β (β€ Γ
β€)) |
13 | 1 | pzriprnglem2 46806 |
. . . . 5
β’
(Baseβπ
) =
(β€ Γ β€) |
14 | 13 | eqcomi 2742 |
. . . 4
β’ (β€
Γ β€) = (Baseβπ
) |
15 | | pzriprng.g |
. . . 4
β’ βΌ =
(π
~QG
πΌ) |
16 | | eqid 2733 |
. . . 4
β’
(+gβπ
) = (+gβπ
) |
17 | 14, 15, 16 | eqglact 19059 |
. . 3
β’ ((π
β Grp β§ πΌ β (β€ Γ
β€) β§ β¨π,
πβ© β (β€
Γ β€)) β [β¨π, πβ©] βΌ = ((π₯ β (β€ Γ
β€) β¦ (β¨π,
πβ©(+gβπ
)π₯)) β πΌ)) |
18 | 4, 11, 12, 17 | mp3an2i 1467 |
. 2
β’ ((π β β€ β§ π β β€) β
[β¨π, πβ©] βΌ = ((π₯ β (β€ Γ
β€) β¦ (β¨π,
πβ©(+gβπ
)π₯)) β πΌ)) |
19 | 11 | mptimass 6073 |
. 2
β’ ((π β β€ β§ π β β€) β ((π₯ β (β€ Γ
β€) β¦ (β¨π,
πβ©(+gβπ
)π₯)) β πΌ) = ran (π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯))) |
20 | | eqid 2733 |
. . . . 5
β’ (π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯)) = (π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯)) |
21 | 20 | rnmpt 5955 |
. . . 4
β’ ran
(π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯)) = {π β£ βπ₯ β πΌ π = (β¨π, πβ©(+gβπ
)π₯)} |
22 | 21 | a1i 11 |
. . 3
β’ ((π β β€ β§ π β β€) β ran
(π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯)) = {π β£ βπ₯ β πΌ π = (β¨π, πβ©(+gβπ
)π₯)}) |
23 | 5 | rexeqi 3325 |
. . . . . 6
β’
(βπ₯ β
πΌ π = (β¨π, πβ©(+gβπ
)π₯) β βπ₯ β (β€ Γ {0})π = (β¨π, πβ©(+gβπ
)π₯)) |
24 | | oveq2 7417 |
. . . . . . . 8
β’ (π₯ = β¨π, πβ© β (β¨π, πβ©(+gβπ
)π₯) = (β¨π, πβ©(+gβπ
)β¨π, πβ©)) |
25 | 24 | eqeq2d 2744 |
. . . . . . 7
β’ (π₯ = β¨π, πβ© β (π = (β¨π, πβ©(+gβπ
)π₯) β π = (β¨π, πβ©(+gβπ
)β¨π, πβ©))) |
26 | 25 | rexxp 5843 |
. . . . . 6
β’
(βπ₯ β
(β€ Γ {0})π =
(β¨π, πβ©(+gβπ
)π₯) β βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©)) |
27 | 23, 26 | bitri 275 |
. . . . 5
β’
(βπ₯ β
πΌ π = (β¨π, πβ©(+gβπ
)π₯) β βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©)) |
28 | 27 | a1i 11 |
. . . 4
β’ ((π β β€ β§ π β β€) β
(βπ₯ β πΌ π = (β¨π, πβ©(+gβπ
)π₯) β βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©))) |
29 | 28 | abbidv 2802 |
. . 3
β’ ((π β β€ β§ π β β€) β {π β£ βπ₯ β πΌ π = (β¨π, πβ©(+gβπ
)π₯)} = {π β£ βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©)}) |
30 | | c0ex 11208 |
. . . . . . . 8
β’ 0 β
V |
31 | | opeq2 4875 |
. . . . . . . . . 10
β’ (π = 0 β β¨π, πβ© = β¨π, 0β©) |
32 | 31 | oveq2d 7425 |
. . . . . . . . 9
β’ (π = 0 β (β¨π, πβ©(+gβπ
)β¨π, πβ©) = (β¨π, πβ©(+gβπ
)β¨π, 0β©)) |
33 | 32 | eqeq2d 2744 |
. . . . . . . 8
β’ (π = 0 β (π = (β¨π, πβ©(+gβπ
)β¨π, πβ©) β π = (β¨π, πβ©(+gβπ
)β¨π, 0β©))) |
34 | 30, 33 | rexsn 4687 |
. . . . . . 7
β’
(βπ β
{0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©) β π = (β¨π, πβ©(+gβπ
)β¨π, 0β©)) |
35 | | zringbas 21023 |
. . . . . . . . 9
β’ β€ =
(Baseββ€ring) |
36 | | zringring 21020 |
. . . . . . . . . 10
β’
β€ring β Ring |
37 | 36 | a1i 11 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β
β€ring β Ring) |
38 | | simpll 766 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β€) |
39 | | simplr 768 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β€) |
40 | | simpr 486 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β€) |
41 | | 0zd 12570 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β 0 β
β€) |
42 | 38, 40 | zaddcld 12670 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π + π) β β€) |
43 | | simpr 486 |
. . . . . . . . . . 11
β’ ((π β β€ β§ π β β€) β π β
β€) |
44 | | 0zd 12570 |
. . . . . . . . . . 11
β’ ((π β β€ β§ π β β€) β 0 β
β€) |
45 | 43, 44 | zaddcld 12670 |
. . . . . . . . . 10
β’ ((π β β€ β§ π β β€) β (π + 0) β
β€) |
46 | 45 | adantr 482 |
. . . . . . . . 9
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π + 0) β
β€) |
47 | | zringplusg 21024 |
. . . . . . . . 9
β’ + =
(+gββ€ring) |
48 | 1, 35, 35, 37, 37, 38, 39, 40, 41, 42, 46, 47, 47, 16 | xpsadd 17520 |
. . . . . . . 8
β’ (((π β β€ β§ π β β€) β§ π β β€) β
(β¨π, πβ©(+gβπ
)β¨π, 0β©) = β¨(π + π), (π + 0)β©) |
49 | 48 | eqeq2d 2744 |
. . . . . . 7
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π = (β¨π, πβ©(+gβπ
)β¨π, 0β©) β π = β¨(π + π), (π + 0)β©)) |
50 | 34, 49 | bitrid 283 |
. . . . . 6
β’ (((π β β€ β§ π β β€) β§ π β β€) β
(βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©) β π = β¨(π + π), (π + 0)β©)) |
51 | 50 | rexbidva 3177 |
. . . . 5
β’ ((π β β€ β§ π β β€) β
(βπ β β€
βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©) β βπ β β€ π = β¨(π + π), (π + 0)β©)) |
52 | 51 | abbidv 2802 |
. . . 4
β’ ((π β β€ β§ π β β€) β {π β£ βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©)} = {π β£ βπ β β€ π = β¨(π + π), (π + 0)β©}) |
53 | | iunab 5055 |
. . . . . 6
β’ βͺ π β β€ {π β£ π = β¨(π + π), (π + 0)β©} = {π β£ βπ β β€ π = β¨(π + π), (π + 0)β©} |
54 | 53 | eqcomi 2742 |
. . . . 5
β’ {π β£ βπ β β€ π = β¨(π + π), (π + 0)β©} = βͺ π β β€ {π β£ π = β¨(π + π), (π + 0)β©} |
55 | 54 | a1i 11 |
. . . 4
β’ ((π β β€ β§ π β β€) β {π β£ βπ β β€ π = β¨(π + π), (π + 0)β©} = βͺ π β β€ {π β£ π = β¨(π + π), (π + 0)β©}) |
56 | | zcn 12563 |
. . . . . . . . . . 11
β’ (π β β€ β π β
β) |
57 | 56 | adantl 483 |
. . . . . . . . . 10
β’ ((π β β€ β§ π β β€) β π β
β) |
58 | 57 | addridd 11414 |
. . . . . . . . 9
β’ ((π β β€ β§ π β β€) β (π + 0) = π) |
59 | 58 | opeq2d 4881 |
. . . . . . . 8
β’ ((π β β€ β§ π β β€) β
β¨(π + π), (π + 0)β© = β¨(π + π), πβ©) |
60 | 59 | eqeq2d 2744 |
. . . . . . 7
β’ ((π β β€ β§ π β β€) β (π = β¨(π + π), (π + 0)β© β π = β¨(π + π), πβ©)) |
61 | 60 | abbidv 2802 |
. . . . . 6
β’ ((π β β€ β§ π β β€) β {π β£ π = β¨(π + π), (π + 0)β©} = {π β£ π = β¨(π + π), πβ©}) |
62 | 61 | iuneq2d 5027 |
. . . . 5
β’ ((π β β€ β§ π β β€) β βͺ π β β€ {π β£ π = β¨(π + π), (π + 0)β©} = βͺ π β β€ {π β£ π = β¨(π + π), πβ©}) |
63 | | df-sn 4630 |
. . . . . . . . 9
β’
{β¨(π + π), πβ©} = {π β£ π = β¨(π + π), πβ©} |
64 | 63 | eqcomi 2742 |
. . . . . . . 8
β’ {π β£ π = β¨(π + π), πβ©} = {β¨(π + π), πβ©} |
65 | 64 | a1i 11 |
. . . . . . 7
β’ (π β β€ β {π β£ π = β¨(π + π), πβ©} = {β¨(π + π), πβ©}) |
66 | 65 | iuneq2i 5019 |
. . . . . 6
β’ βͺ π β β€ {π β£ π = β¨(π + π), πβ©} = βͺ π β β€ {β¨(π + π), πβ©} |
67 | 66 | a1i 11 |
. . . . 5
β’ ((π β β€ β§ π β β€) β βͺ π β β€ {π β£ π = β¨(π + π), πβ©} = βͺ π β β€ {β¨(π + π), πβ©}) |
68 | | velsn 4645 |
. . . . . . . . . 10
β’ (π¦ β {β¨(π + π), πβ©} β π¦ = β¨(π + π), πβ©) |
69 | 68 | rexbii 3095 |
. . . . . . . . 9
β’
(βπ β
β€ π¦ β
{β¨(π + π), πβ©} β βπ β β€ π¦ = β¨(π + π), πβ©) |
70 | 42 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨(π + π), πβ©) β (π + π) β β€) |
71 | | simplr 768 |
. . . . . . . . . . . . . 14
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨(π + π), πβ©) β§ π = (π + π)) β π¦ = β¨(π + π), πβ©) |
72 | | opeq1 4874 |
. . . . . . . . . . . . . . 15
β’ (π = (π + π) β β¨π, πβ© = β¨(π + π), πβ©) |
73 | 72 | adantl 483 |
. . . . . . . . . . . . . 14
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨(π + π), πβ©) β§ π = (π + π)) β β¨π, πβ© = β¨(π + π), πβ©) |
74 | 71, 73 | eqeq12d 2749 |
. . . . . . . . . . . . 13
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨(π + π), πβ©) β§ π = (π + π)) β (π¦ = β¨π, πβ© β β¨(π + π), πβ© = β¨(π + π), πβ©)) |
75 | | eqidd 2734 |
. . . . . . . . . . . . 13
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨(π + π), πβ©) β β¨(π + π), πβ© = β¨(π + π), πβ©) |
76 | 70, 74, 75 | rspcedvd 3615 |
. . . . . . . . . . . 12
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨(π + π), πβ©) β βπ β β€ π¦ = β¨π, πβ©) |
77 | 76 | ex 414 |
. . . . . . . . . . 11
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π¦ = β¨(π + π), πβ© β βπ β β€ π¦ = β¨π, πβ©)) |
78 | 77 | rexlimdva 3156 |
. . . . . . . . . 10
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ = β¨(π + π), πβ© β βπ β β€ π¦ = β¨π, πβ©)) |
79 | | simpr 486 |
. . . . . . . . . . . . . . 15
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β€) |
80 | | simpll 766 |
. . . . . . . . . . . . . . 15
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β€) |
81 | 79, 80 | zsubcld 12671 |
. . . . . . . . . . . . . 14
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π β π) β β€) |
82 | 81 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨π, πβ©) β (π β π) β β€) |
83 | | simplr 768 |
. . . . . . . . . . . . . 14
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨π, πβ©) β§ π = (π β π)) β π¦ = β¨π, πβ©) |
84 | | oveq2 7417 |
. . . . . . . . . . . . . . . 16
β’ (π = (π β π) β (π + π) = (π + (π β π))) |
85 | 84 | adantl 483 |
. . . . . . . . . . . . . . 15
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨π, πβ©) β§ π = (π β π)) β (π + π) = (π + (π β π))) |
86 | 85 | opeq1d 4880 |
. . . . . . . . . . . . . 14
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨π, πβ©) β§ π = (π β π)) β β¨(π + π), πβ© = β¨(π + (π β π)), πβ©) |
87 | 83, 86 | eqeq12d 2749 |
. . . . . . . . . . . . 13
β’
(((((π β
β€ β§ π β
β€) β§ π β
β€) β§ π¦ =
β¨π, πβ©) β§ π = (π β π)) β (π¦ = β¨(π + π), πβ© β β¨π, πβ© = β¨(π + (π β π)), πβ©)) |
88 | | zcn 12563 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β€ β π β
β) |
89 | 88 | adantr 482 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β β€ β§ π β β€) β π β
β) |
90 | 89 | adantr 482 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β) |
91 | | zcn 12563 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β€ β π β
β) |
92 | 91 | adantl 483 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β€ β§ π β β€) β§ π β β€) β π β
β) |
93 | 90, 92 | pncan3d 11574 |
. . . . . . . . . . . . . . . 16
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π + (π β π)) = π) |
94 | 93 | eqcomd 2739 |
. . . . . . . . . . . . . . 15
β’ (((π β β€ β§ π β β€) β§ π β β€) β π = (π + (π β π))) |
95 | 94 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨π, πβ©) β π = (π + (π β π))) |
96 | 95 | opeq1d 4880 |
. . . . . . . . . . . . 13
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨π, πβ©) β β¨π, πβ© = β¨(π + (π β π)), πβ©) |
97 | 82, 87, 96 | rspcedvd 3615 |
. . . . . . . . . . . 12
β’ ((((π β β€ β§ π β β€) β§ π β β€) β§ π¦ = β¨π, πβ©) β βπ β β€ π¦ = β¨(π + π), πβ©) |
98 | 97 | ex 414 |
. . . . . . . . . . 11
β’ (((π β β€ β§ π β β€) β§ π β β€) β (π¦ = β¨π, πβ© β βπ β β€ π¦ = β¨(π + π), πβ©)) |
99 | 98 | rexlimdva 3156 |
. . . . . . . . . 10
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ = β¨π, πβ© β βπ β β€ π¦ = β¨(π + π), πβ©)) |
100 | 78, 99 | impbid 211 |
. . . . . . . . 9
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ = β¨(π + π), πβ© β βπ β β€ π¦ = β¨π, πβ©)) |
101 | 69, 100 | bitrid 283 |
. . . . . . . 8
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ β {β¨(π + π), πβ©} β βπ β β€ π¦ = β¨π, πβ©)) |
102 | | opeq2 4875 |
. . . . . . . . . . . . 13
β’ (π = π β β¨π, πβ© = β¨π, πβ©) |
103 | 102 | eqeq2d 2744 |
. . . . . . . . . . . 12
β’ (π = π β (π¦ = β¨π, πβ© β π¦ = β¨π, πβ©)) |
104 | 103 | rexsng 4679 |
. . . . . . . . . . 11
β’ (π β β€ β
(βπ β {π}π¦ = β¨π, πβ© β π¦ = β¨π, πβ©)) |
105 | 104 | adantl 483 |
. . . . . . . . . 10
β’ ((π β β€ β§ π β β€) β
(βπ β {π}π¦ = β¨π, πβ© β π¦ = β¨π, πβ©)) |
106 | 105 | bicomd 222 |
. . . . . . . . 9
β’ ((π β β€ β§ π β β€) β (π¦ = β¨π, πβ© β βπ β {π}π¦ = β¨π, πβ©)) |
107 | 106 | rexbidv 3179 |
. . . . . . . 8
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ = β¨π, πβ© β βπ β β€ βπ β {π}π¦ = β¨π, πβ©)) |
108 | 101, 107 | bitrd 279 |
. . . . . . 7
β’ ((π β β€ β§ π β β€) β
(βπ β β€
π¦ β {β¨(π + π), πβ©} β βπ β β€ βπ β {π}π¦ = β¨π, πβ©)) |
109 | | eliun 5002 |
. . . . . . 7
β’ (π¦ β βͺ π β β€ {β¨(π + π), πβ©} β βπ β β€ π¦ β {β¨(π + π), πβ©}) |
110 | | elxp2 5701 |
. . . . . . 7
β’ (π¦ β (β€ Γ {π}) β βπ β β€ βπ β {π}π¦ = β¨π, πβ©) |
111 | 108, 109,
110 | 3bitr4g 314 |
. . . . . 6
β’ ((π β β€ β§ π β β€) β (π¦ β βͺ π β β€ {β¨(π + π), πβ©} β π¦ β (β€ Γ {π}))) |
112 | 111 | eqrdv 2731 |
. . . . 5
β’ ((π β β€ β§ π β β€) β βͺ π β β€ {β¨(π + π), πβ©} = (β€ Γ {π})) |
113 | 62, 67, 112 | 3eqtrd 2777 |
. . . 4
β’ ((π β β€ β§ π β β€) β βͺ π β β€ {π β£ π = β¨(π + π), (π + 0)β©} = (β€ Γ {π})) |
114 | 52, 55, 113 | 3eqtrd 2777 |
. . 3
β’ ((π β β€ β§ π β β€) β {π β£ βπ β β€ βπ β {0}π = (β¨π, πβ©(+gβπ
)β¨π, πβ©)} = (β€ Γ {π})) |
115 | 22, 29, 114 | 3eqtrd 2777 |
. 2
β’ ((π β β€ β§ π β β€) β ran
(π₯ β πΌ β¦ (β¨π, πβ©(+gβπ
)π₯)) = (β€ Γ {π})) |
116 | 18, 19, 115 | 3eqtrd 2777 |
1
β’ ((π β β€ β§ π β β€) β
[β¨π, πβ©] βΌ = (β€ Γ
{π})) |