MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   GIF version

Theorem metnrmlem3 24777
Description: Lemma for metnrm 24778. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
metnrmlem.g 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metnrmlem.v 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
Assertion
Ref Expression
metnrmlem3 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑡,𝑠,𝑤,𝑥,𝑦,𝑧,𝐷   𝐽,𝑠,𝑡,𝑤,𝑦,𝑧   𝜑,𝑠,𝑡   𝐺,𝑠,𝑡   𝑇,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑈,𝑠,𝑤   𝑋,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝐹,𝑠,𝑡,𝑤,𝑧   𝑤,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑡)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥)   𝑉(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2 metdscn.j . . . 4 𝐽 = (MetOpen‘𝐷)
3 metnrmlem.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.3 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐽))
5 metnrmlem.2 . . . 4 (𝜑𝑆 ∈ (Clsd‘𝐽))
6 incom 4156 . . . . 5 (𝑇𝑆) = (𝑆𝑇)
7 metnrmlem.4 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
86, 7eqtrid 2778 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
9 metnrmlem.v . . . 4 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
101, 2, 3, 4, 5, 8, 9metnrmlem2 24776 . . 3 (𝜑 → (𝑉𝐽𝑆𝑉))
1110simpld 494 . 2 (𝜑𝑉𝐽)
12 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
13 metnrmlem.u . . . 4 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
1412, 2, 3, 5, 4, 7, 13metnrmlem2 24776 . . 3 (𝜑 → (𝑈𝐽𝑇𝑈))
1514simpld 494 . 2 (𝜑𝑈𝐽)
1610simprd 495 . 2 (𝜑𝑆𝑉)
1714simprd 495 . 2 (𝜑𝑇𝑈)
189ineq1i 4163 . . . 4 (𝑉𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
19 iunin1 5018 . . . 4 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2018, 19eqtr4i 2757 . . 3 (𝑉𝑈) = 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2113ineq2i 4164 . . . . . . . 8 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
22 iunin2 5017 . . . . . . . 8 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
2321, 22eqtr4i 2757 . . . . . . 7 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
243adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
25 eqid 2731 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
2625cldss 22944 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
275, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 𝐽)
282mopnuni 24356 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
293, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
3027, 29sseqtrrd 3967 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3130sselda 3929 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠𝑋)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑠𝑋)
3325cldss 22944 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
344, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑇 𝐽)
3534, 29sseqtrrd 3967 . . . . . . . . . . . . . 14 (𝜑𝑇𝑋)
3635sselda 3929 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑋)
3736adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑡𝑋)
381, 2, 3, 4, 5, 8metnrmlem1a 24774 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (0 < (𝐺𝑠) ∧ if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+))
3938simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4039adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4140rphalfcld 12946 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ+)
4241rpxrd 12935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ*)
4312, 2, 3, 5, 4, 7metnrmlem1a 24774 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4443adantrl 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4544simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
4645rphalfcld 12946 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
4746rpxrd 12935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
4840rpred 12934 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ)
4948rehalfcld 12368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ)
5045rpred 12934 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ)
5150rehalfcld 12368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ)
5249, 51rexaddd 13133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5348recnd 11140 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℂ)
5450recnd 11140 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℂ)
55 2cnd 12203 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℂ)
56 2ne0 12229 . . . . . . . . . . . . . . . 16 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ≠ 0)
5853, 54, 55, 57divdird 11935 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5952, 58eqtr4d 2769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2))
601, 2, 3, 4, 5, 8metnrmlem1 24775 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑠𝑆)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
6160ancom2s 650 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
62 xmetsym 24262 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋𝑠𝑋) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6324, 37, 32, 62syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6461, 63breqtrd 5115 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡))
6512, 2, 3, 5, 4, 7metnrmlem1 24775 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡))
6640rpxrd 12935 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ*)
6745rpxrd 12935 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*)
68 xmetcl 24246 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) → (𝑠𝐷𝑡) ∈ ℝ*)
6924, 32, 37, 68syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑠𝐷𝑡) ∈ ℝ*)
70 xle2add 13158 . . . . . . . . . . . . . . . . 17 (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ* ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*) ∧ ((𝑠𝐷𝑡) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ*)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7166, 67, 69, 69, 70syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7264, 65, 71mp2and 699 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
7348, 50readdcld 11141 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℝ)
7473recnd 11140 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℂ)
7574, 55, 57divcan2d 11899 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
76 2re 12199 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
7773rehalfcld 12368 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ)
78 rexmul 13170 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
7976, 77, 78sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
8048, 50rexaddd 13133 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
8175, 79, 803eqtr4d 2776 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
82 x2times 13198 . . . . . . . . . . . . . . . 16 ((𝑠𝐷𝑡) ∈ ℝ* → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8369, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8472, 81, 833brtr4d 5121 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡)))
8577rexrd 11162 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ*)
86 2rp 12895 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
8786a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℝ+)
88 xlemul2 13190 . . . . . . . . . . . . . . 15 ((((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ* ∧ 2 ∈ ℝ+) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
8985, 69, 87, 88syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡))
9159, 90eqbrtrd 5111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))
92 bldisj 24313 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ* ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ* ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
9324, 32, 37, 42, 47, 91, 92syl33anc 1387 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
94 eqimss 3988 . . . . . . . . . . 11 (((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅ → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9695anassrs 467 . . . . . . . . 9 (((𝜑𝑠𝑆) ∧ 𝑡𝑇) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9796ralrimiva 3124 . . . . . . . 8 ((𝜑𝑠𝑆) → ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
98 iunss 4992 . . . . . . . 8 ( 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅ ↔ ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9997, 98sylibr 234 . . . . . . 7 ((𝜑𝑠𝑆) → 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
10023, 99eqsstrid 3968 . . . . . 6 ((𝜑𝑠𝑆) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
101100ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
102 iunss 4992 . . . . 5 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ ↔ ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
103101, 102sylibr 234 . . . 4 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
104 ss0 4349 . . . 4 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ → 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
105103, 104syl 17 . . 3 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
10620, 105eqtrid 2778 . 2 (𝜑 → (𝑉𝑈) = ∅)
107 sseq2 3956 . . . 4 (𝑧 = 𝑉 → (𝑆𝑧𝑆𝑉))
108 ineq1 4160 . . . . 5 (𝑧 = 𝑉 → (𝑧𝑤) = (𝑉𝑤))
109108eqeq1d 2733 . . . 4 (𝑧 = 𝑉 → ((𝑧𝑤) = ∅ ↔ (𝑉𝑤) = ∅))
110107, 1093anbi13d 1440 . . 3 (𝑧 = 𝑉 → ((𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅)))
111 sseq2 3956 . . . 4 (𝑤 = 𝑈 → (𝑇𝑤𝑇𝑈))
112 ineq2 4161 . . . . 5 (𝑤 = 𝑈 → (𝑉𝑤) = (𝑉𝑈))
113112eqeq1d 2733 . . . 4 (𝑤 = 𝑈 → ((𝑉𝑤) = ∅ ↔ (𝑉𝑈) = ∅))
114111, 1133anbi23d 1441 . . 3 (𝑤 = 𝑈 → ((𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)))
115110, 114rspc2ev 3585 . 2 ((𝑉𝐽𝑈𝐽 ∧ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)) → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
11611, 15, 16, 17, 106, 115syl113anc 1384 1 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  ifcif 4472   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  infcinf 9325  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  2c2 12180  +crp 12890   +𝑒 cxad 13009   ·e cxmu 13010  ∞Metcxmet 21276  ballcbl 21278  MetOpencmopn 21281  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936
This theorem is referenced by:  metnrm  24778
  Copyright terms: Public domain W3C validator