MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   GIF version

Theorem metnrmlem3 24224
Description: Lemma for metnrm 24225. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
metnrmlem.g 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metnrmlem.v 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
Assertion
Ref Expression
metnrmlem3 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑡,𝑠,𝑤,𝑥,𝑦,𝑧,𝐷   𝐽,𝑠,𝑡,𝑤,𝑦,𝑧   𝜑,𝑠,𝑡   𝐺,𝑠,𝑡   𝑇,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑈,𝑠,𝑤   𝑋,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝐹,𝑠,𝑡,𝑤,𝑧   𝑤,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑡)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥)   𝑉(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2 metdscn.j . . . 4 𝐽 = (MetOpen‘𝐷)
3 metnrmlem.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.3 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐽))
5 metnrmlem.2 . . . 4 (𝜑𝑆 ∈ (Clsd‘𝐽))
6 incom 4161 . . . . 5 (𝑇𝑆) = (𝑆𝑇)
7 metnrmlem.4 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
86, 7eqtrid 2788 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
9 metnrmlem.v . . . 4 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
101, 2, 3, 4, 5, 8, 9metnrmlem2 24223 . . 3 (𝜑 → (𝑉𝐽𝑆𝑉))
1110simpld 495 . 2 (𝜑𝑉𝐽)
12 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
13 metnrmlem.u . . . 4 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
1412, 2, 3, 5, 4, 7, 13metnrmlem2 24223 . . 3 (𝜑 → (𝑈𝐽𝑇𝑈))
1514simpld 495 . 2 (𝜑𝑈𝐽)
1610simprd 496 . 2 (𝜑𝑆𝑉)
1714simprd 496 . 2 (𝜑𝑇𝑈)
189ineq1i 4168 . . . 4 (𝑉𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
19 iunin1 5032 . . . 4 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2018, 19eqtr4i 2767 . . 3 (𝑉𝑈) = 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2113ineq2i 4169 . . . . . . . 8 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
22 iunin2 5031 . . . . . . . 8 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
2321, 22eqtr4i 2767 . . . . . . 7 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
243adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
25 eqid 2736 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
2625cldss 22380 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
275, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 𝐽)
282mopnuni 23794 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
293, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
3027, 29sseqtrrd 3985 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3130sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠𝑋)
3231adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑠𝑋)
3325cldss 22380 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
344, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑇 𝐽)
3534, 29sseqtrrd 3985 . . . . . . . . . . . . . 14 (𝜑𝑇𝑋)
3635sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑋)
3736adantrl 714 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑡𝑋)
381, 2, 3, 4, 5, 8metnrmlem1a 24221 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (0 < (𝐺𝑠) ∧ if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+))
3938simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4039adantrr 715 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4140rphalfcld 12969 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ+)
4241rpxrd 12958 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ*)
4312, 2, 3, 5, 4, 7metnrmlem1a 24221 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4443adantrl 714 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4544simprd 496 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
4645rphalfcld 12969 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
4746rpxrd 12958 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
4840rpred 12957 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ)
4948rehalfcld 12400 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ)
5045rpred 12957 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ)
5150rehalfcld 12400 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ)
5249, 51rexaddd 13153 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5348recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℂ)
5450recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℂ)
55 2cnd 12231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℂ)
56 2ne0 12257 . . . . . . . . . . . . . . . 16 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ≠ 0)
5853, 54, 55, 57divdird 11969 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5952, 58eqtr4d 2779 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2))
601, 2, 3, 4, 5, 8metnrmlem1 24222 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑠𝑆)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
6160ancom2s 648 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
62 xmetsym 23700 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋𝑠𝑋) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6324, 37, 32, 62syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6461, 63breqtrd 5131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡))
6512, 2, 3, 5, 4, 7metnrmlem1 24222 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡))
6640rpxrd 12958 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ*)
6745rpxrd 12958 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*)
68 xmetcl 23684 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) → (𝑠𝐷𝑡) ∈ ℝ*)
6924, 32, 37, 68syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑠𝐷𝑡) ∈ ℝ*)
70 xle2add 13178 . . . . . . . . . . . . . . . . 17 (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ* ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*) ∧ ((𝑠𝐷𝑡) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ*)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7166, 67, 69, 69, 70syl22anc 837 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7264, 65, 71mp2and 697 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
7348, 50readdcld 11184 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℝ)
7473recnd 11183 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℂ)
7574, 55, 57divcan2d 11933 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
76 2re 12227 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
7773rehalfcld 12400 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ)
78 rexmul 13190 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
7976, 77, 78sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
8048, 50rexaddd 13153 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
8175, 79, 803eqtr4d 2786 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
82 x2times 13218 . . . . . . . . . . . . . . . 16 ((𝑠𝐷𝑡) ∈ ℝ* → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8369, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8472, 81, 833brtr4d 5137 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡)))
8577rexrd 11205 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ*)
86 2rp 12920 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
8786a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℝ+)
88 xlemul2 13210 . . . . . . . . . . . . . . 15 ((((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ* ∧ 2 ∈ ℝ+) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
8985, 69, 87, 88syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
9084, 89mpbird 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡))
9159, 90eqbrtrd 5127 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))
92 bldisj 23751 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ* ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ* ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
9324, 32, 37, 42, 47, 91, 92syl33anc 1385 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
94 eqimss 4000 . . . . . . . . . . 11 (((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅ → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9695anassrs 468 . . . . . . . . 9 (((𝜑𝑠𝑆) ∧ 𝑡𝑇) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9796ralrimiva 3143 . . . . . . . 8 ((𝜑𝑠𝑆) → ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
98 iunss 5005 . . . . . . . 8 ( 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅ ↔ ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9997, 98sylibr 233 . . . . . . 7 ((𝜑𝑠𝑆) → 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
10023, 99eqsstrid 3992 . . . . . 6 ((𝜑𝑠𝑆) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
101100ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
102 iunss 5005 . . . . 5 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ ↔ ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
103101, 102sylibr 233 . . . 4 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
104 ss0 4358 . . . 4 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ → 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
105103, 104syl 17 . . 3 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
10620, 105eqtrid 2788 . 2 (𝜑 → (𝑉𝑈) = ∅)
107 sseq2 3970 . . . 4 (𝑧 = 𝑉 → (𝑆𝑧𝑆𝑉))
108 ineq1 4165 . . . . 5 (𝑧 = 𝑉 → (𝑧𝑤) = (𝑉𝑤))
109108eqeq1d 2738 . . . 4 (𝑧 = 𝑉 → ((𝑧𝑤) = ∅ ↔ (𝑉𝑤) = ∅))
110107, 1093anbi13d 1438 . . 3 (𝑧 = 𝑉 → ((𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅)))
111 sseq2 3970 . . . 4 (𝑤 = 𝑈 → (𝑇𝑤𝑇𝑈))
112 ineq2 4166 . . . . 5 (𝑤 = 𝑈 → (𝑉𝑤) = (𝑉𝑈))
113112eqeq1d 2738 . . . 4 (𝑤 = 𝑈 → ((𝑉𝑤) = ∅ ↔ (𝑉𝑈) = ∅))
114111, 1133anbi23d 1439 . . 3 (𝑤 = 𝑈 → ((𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)))
115110, 114rspc2ev 3592 . 2 ((𝑉𝐽𝑈𝐽 ∧ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)) → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
11611, 15, 16, 17, 106, 115syl113anc 1382 1 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cin 3909  wss 3910  c0 4282  ifcif 4486   cuni 4865   ciun 4954   class class class wbr 5105  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  +crp 12915   +𝑒 cxad 13031   ·e cxmu 13032  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  Clsdccld 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-ec 8650  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372
This theorem is referenced by:  metnrm  24225
  Copyright terms: Public domain W3C validator