MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   GIF version

Theorem metnrmlem3 24750
Description: Lemma for metnrm 24751. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
metnrmlem.g 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metnrmlem.v 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
Assertion
Ref Expression
metnrmlem3 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑡,𝑠,𝑤,𝑥,𝑦,𝑧,𝐷   𝐽,𝑠,𝑡,𝑤,𝑦,𝑧   𝜑,𝑠,𝑡   𝐺,𝑠,𝑡   𝑇,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑈,𝑠,𝑤   𝑋,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝐹,𝑠,𝑡,𝑤,𝑧   𝑤,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑡)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥)   𝑉(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2 metdscn.j . . . 4 𝐽 = (MetOpen‘𝐷)
3 metnrmlem.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.3 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐽))
5 metnrmlem.2 . . . 4 (𝜑𝑆 ∈ (Clsd‘𝐽))
6 incom 4172 . . . . 5 (𝑇𝑆) = (𝑆𝑇)
7 metnrmlem.4 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
86, 7eqtrid 2776 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
9 metnrmlem.v . . . 4 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
101, 2, 3, 4, 5, 8, 9metnrmlem2 24749 . . 3 (𝜑 → (𝑉𝐽𝑆𝑉))
1110simpld 494 . 2 (𝜑𝑉𝐽)
12 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
13 metnrmlem.u . . . 4 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
1412, 2, 3, 5, 4, 7, 13metnrmlem2 24749 . . 3 (𝜑 → (𝑈𝐽𝑇𝑈))
1514simpld 494 . 2 (𝜑𝑈𝐽)
1610simprd 495 . 2 (𝜑𝑆𝑉)
1714simprd 495 . 2 (𝜑𝑇𝑈)
189ineq1i 4179 . . . 4 (𝑉𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
19 iunin1 5036 . . . 4 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2018, 19eqtr4i 2755 . . 3 (𝑉𝑈) = 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2113ineq2i 4180 . . . . . . . 8 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
22 iunin2 5035 . . . . . . . 8 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
2321, 22eqtr4i 2755 . . . . . . 7 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
243adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
25 eqid 2729 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
2625cldss 22916 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
275, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 𝐽)
282mopnuni 24329 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
293, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
3027, 29sseqtrrd 3984 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3130sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠𝑋)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑠𝑋)
3325cldss 22916 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
344, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑇 𝐽)
3534, 29sseqtrrd 3984 . . . . . . . . . . . . . 14 (𝜑𝑇𝑋)
3635sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑋)
3736adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑡𝑋)
381, 2, 3, 4, 5, 8metnrmlem1a 24747 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (0 < (𝐺𝑠) ∧ if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+))
3938simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4039adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4140rphalfcld 13007 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ+)
4241rpxrd 12996 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ*)
4312, 2, 3, 5, 4, 7metnrmlem1a 24747 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4443adantrl 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4544simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
4645rphalfcld 13007 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
4746rpxrd 12996 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
4840rpred 12995 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ)
4948rehalfcld 12429 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ)
5045rpred 12995 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ)
5150rehalfcld 12429 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ)
5249, 51rexaddd 13194 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5348recnd 11202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℂ)
5450recnd 11202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℂ)
55 2cnd 12264 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℂ)
56 2ne0 12290 . . . . . . . . . . . . . . . 16 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ≠ 0)
5853, 54, 55, 57divdird 11996 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5952, 58eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2))
601, 2, 3, 4, 5, 8metnrmlem1 24748 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑠𝑆)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
6160ancom2s 650 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
62 xmetsym 24235 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋𝑠𝑋) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6324, 37, 32, 62syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6461, 63breqtrd 5133 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡))
6512, 2, 3, 5, 4, 7metnrmlem1 24748 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡))
6640rpxrd 12996 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ*)
6745rpxrd 12996 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*)
68 xmetcl 24219 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) → (𝑠𝐷𝑡) ∈ ℝ*)
6924, 32, 37, 68syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑠𝐷𝑡) ∈ ℝ*)
70 xle2add 13219 . . . . . . . . . . . . . . . . 17 (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ* ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*) ∧ ((𝑠𝐷𝑡) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ*)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7166, 67, 69, 69, 70syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7264, 65, 71mp2and 699 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
7348, 50readdcld 11203 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℝ)
7473recnd 11202 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℂ)
7574, 55, 57divcan2d 11960 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
76 2re 12260 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
7773rehalfcld 12429 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ)
78 rexmul 13231 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
7976, 77, 78sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
8048, 50rexaddd 13194 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
8175, 79, 803eqtr4d 2774 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
82 x2times 13259 . . . . . . . . . . . . . . . 16 ((𝑠𝐷𝑡) ∈ ℝ* → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8369, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8472, 81, 833brtr4d 5139 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡)))
8577rexrd 11224 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ*)
86 2rp 12956 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
8786a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℝ+)
88 xlemul2 13251 . . . . . . . . . . . . . . 15 ((((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ* ∧ 2 ∈ ℝ+) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
8985, 69, 87, 88syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡))
9159, 90eqbrtrd 5129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))
92 bldisj 24286 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ* ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ* ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
9324, 32, 37, 42, 47, 91, 92syl33anc 1387 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
94 eqimss 4005 . . . . . . . . . . 11 (((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅ → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9695anassrs 467 . . . . . . . . 9 (((𝜑𝑠𝑆) ∧ 𝑡𝑇) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9796ralrimiva 3125 . . . . . . . 8 ((𝜑𝑠𝑆) → ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
98 iunss 5009 . . . . . . . 8 ( 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅ ↔ ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9997, 98sylibr 234 . . . . . . 7 ((𝜑𝑠𝑆) → 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
10023, 99eqsstrid 3985 . . . . . 6 ((𝜑𝑠𝑆) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
101100ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
102 iunss 5009 . . . . 5 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ ↔ ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
103101, 102sylibr 234 . . . 4 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
104 ss0 4365 . . . 4 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ → 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
105103, 104syl 17 . . 3 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
10620, 105eqtrid 2776 . 2 (𝜑 → (𝑉𝑈) = ∅)
107 sseq2 3973 . . . 4 (𝑧 = 𝑉 → (𝑆𝑧𝑆𝑉))
108 ineq1 4176 . . . . 5 (𝑧 = 𝑉 → (𝑧𝑤) = (𝑉𝑤))
109108eqeq1d 2731 . . . 4 (𝑧 = 𝑉 → ((𝑧𝑤) = ∅ ↔ (𝑉𝑤) = ∅))
110107, 1093anbi13d 1440 . . 3 (𝑧 = 𝑉 → ((𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅)))
111 sseq2 3973 . . . 4 (𝑤 = 𝑈 → (𝑇𝑤𝑇𝑈))
112 ineq2 4177 . . . . 5 (𝑤 = 𝑈 → (𝑉𝑤) = (𝑉𝑈))
113112eqeq1d 2731 . . . 4 (𝑤 = 𝑈 → ((𝑉𝑤) = ∅ ↔ (𝑉𝑈) = ∅))
114111, 1133anbi23d 1441 . . 3 (𝑤 = 𝑈 → ((𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)))
115110, 114rspc2ev 3601 . 2 ((𝑉𝐽𝑈𝐽 ∧ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)) → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
11611, 15, 16, 17, 106, 115syl113anc 1384 1 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296  ifcif 4488   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951   +𝑒 cxad 13070   ·e cxmu 13071  ∞Metcxmet 21249  ballcbl 21251  MetOpencmopn 21254  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-ec 8673  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908
This theorem is referenced by:  metnrm  24751
  Copyright terms: Public domain W3C validator