MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   GIF version

Theorem metnrmlem3 23930
Description: Lemma for metnrm 23931. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
metnrmlem.g 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metnrmlem.v 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
Assertion
Ref Expression
metnrmlem3 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑡,𝑠,𝑤,𝑥,𝑦,𝑧,𝐷   𝐽,𝑠,𝑡,𝑤,𝑦,𝑧   𝜑,𝑠,𝑡   𝐺,𝑠,𝑡   𝑇,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑈,𝑠,𝑤   𝑋,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝐹,𝑠,𝑡,𝑤,𝑧   𝑤,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑡)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥)   𝑉(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2 metdscn.j . . . 4 𝐽 = (MetOpen‘𝐷)
3 metnrmlem.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.3 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐽))
5 metnrmlem.2 . . . 4 (𝜑𝑆 ∈ (Clsd‘𝐽))
6 incom 4131 . . . . 5 (𝑇𝑆) = (𝑆𝑇)
7 metnrmlem.4 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
86, 7eqtrid 2790 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
9 metnrmlem.v . . . 4 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
101, 2, 3, 4, 5, 8, 9metnrmlem2 23929 . . 3 (𝜑 → (𝑉𝐽𝑆𝑉))
1110simpld 494 . 2 (𝜑𝑉𝐽)
12 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
13 metnrmlem.u . . . 4 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
1412, 2, 3, 5, 4, 7, 13metnrmlem2 23929 . . 3 (𝜑 → (𝑈𝐽𝑇𝑈))
1514simpld 494 . 2 (𝜑𝑈𝐽)
1610simprd 495 . 2 (𝜑𝑆𝑉)
1714simprd 495 . 2 (𝜑𝑇𝑈)
189ineq1i 4139 . . . 4 (𝑉𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
19 iunin1 4997 . . . 4 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2018, 19eqtr4i 2769 . . 3 (𝑉𝑈) = 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2113ineq2i 4140 . . . . . . . 8 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
22 iunin2 4996 . . . . . . . 8 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
2321, 22eqtr4i 2769 . . . . . . 7 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
243adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
25 eqid 2738 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
2625cldss 22088 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
275, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 𝐽)
282mopnuni 23502 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
293, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
3027, 29sseqtrrd 3958 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3130sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠𝑋)
3231adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑠𝑋)
3325cldss 22088 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
344, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑇 𝐽)
3534, 29sseqtrrd 3958 . . . . . . . . . . . . . 14 (𝜑𝑇𝑋)
3635sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑋)
3736adantrl 712 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑡𝑋)
381, 2, 3, 4, 5, 8metnrmlem1a 23927 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (0 < (𝐺𝑠) ∧ if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+))
3938simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4039adantrr 713 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4140rphalfcld 12713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ+)
4241rpxrd 12702 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ*)
4312, 2, 3, 5, 4, 7metnrmlem1a 23927 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4443adantrl 712 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4544simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
4645rphalfcld 12713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
4746rpxrd 12702 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
4840rpred 12701 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ)
4948rehalfcld 12150 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ)
5045rpred 12701 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ)
5150rehalfcld 12150 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ)
5249, 51rexaddd 12897 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5348recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℂ)
5450recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℂ)
55 2cnd 11981 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℂ)
56 2ne0 12007 . . . . . . . . . . . . . . . 16 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ≠ 0)
5853, 54, 55, 57divdird 11719 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5952, 58eqtr4d 2781 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2))
601, 2, 3, 4, 5, 8metnrmlem1 23928 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑠𝑆)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
6160ancom2s 646 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
62 xmetsym 23408 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋𝑠𝑋) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6324, 37, 32, 62syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6461, 63breqtrd 5096 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡))
6512, 2, 3, 5, 4, 7metnrmlem1 23928 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡))
6640rpxrd 12702 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ*)
6745rpxrd 12702 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*)
68 xmetcl 23392 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) → (𝑠𝐷𝑡) ∈ ℝ*)
6924, 32, 37, 68syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑠𝐷𝑡) ∈ ℝ*)
70 xle2add 12922 . . . . . . . . . . . . . . . . 17 (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ* ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*) ∧ ((𝑠𝐷𝑡) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ*)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7166, 67, 69, 69, 70syl22anc 835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7264, 65, 71mp2and 695 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
7348, 50readdcld 10935 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℝ)
7473recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℂ)
7574, 55, 57divcan2d 11683 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
76 2re 11977 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
7773rehalfcld 12150 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ)
78 rexmul 12934 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
7976, 77, 78sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
8048, 50rexaddd 12897 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
8175, 79, 803eqtr4d 2788 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
82 x2times 12962 . . . . . . . . . . . . . . . 16 ((𝑠𝐷𝑡) ∈ ℝ* → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8369, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8472, 81, 833brtr4d 5102 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡)))
8577rexrd 10956 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ*)
86 2rp 12664 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
8786a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℝ+)
88 xlemul2 12954 . . . . . . . . . . . . . . 15 ((((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ* ∧ 2 ∈ ℝ+) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
8985, 69, 87, 88syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
9084, 89mpbird 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡))
9159, 90eqbrtrd 5092 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))
92 bldisj 23459 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ* ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ* ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
9324, 32, 37, 42, 47, 91, 92syl33anc 1383 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
94 eqimss 3973 . . . . . . . . . . 11 (((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅ → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9695anassrs 467 . . . . . . . . 9 (((𝜑𝑠𝑆) ∧ 𝑡𝑇) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9796ralrimiva 3107 . . . . . . . 8 ((𝜑𝑠𝑆) → ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
98 iunss 4971 . . . . . . . 8 ( 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅ ↔ ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9997, 98sylibr 233 . . . . . . 7 ((𝜑𝑠𝑆) → 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
10023, 99eqsstrid 3965 . . . . . 6 ((𝜑𝑠𝑆) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
101100ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
102 iunss 4971 . . . . 5 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ ↔ ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
103101, 102sylibr 233 . . . 4 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
104 ss0 4329 . . . 4 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ → 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
105103, 104syl 17 . . 3 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
10620, 105eqtrid 2790 . 2 (𝜑 → (𝑉𝑈) = ∅)
107 sseq2 3943 . . . 4 (𝑧 = 𝑉 → (𝑆𝑧𝑆𝑉))
108 ineq1 4136 . . . . 5 (𝑧 = 𝑉 → (𝑧𝑤) = (𝑉𝑤))
109108eqeq1d 2740 . . . 4 (𝑧 = 𝑉 → ((𝑧𝑤) = ∅ ↔ (𝑉𝑤) = ∅))
110107, 1093anbi13d 1436 . . 3 (𝑧 = 𝑉 → ((𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅)))
111 sseq2 3943 . . . 4 (𝑤 = 𝑈 → (𝑇𝑤𝑇𝑈))
112 ineq2 4137 . . . . 5 (𝑤 = 𝑈 → (𝑉𝑤) = (𝑉𝑈))
113112eqeq1d 2740 . . . 4 (𝑤 = 𝑈 → ((𝑉𝑤) = ∅ ↔ (𝑉𝑈) = ∅))
114111, 1133anbi23d 1437 . . 3 (𝑤 = 𝑈 → ((𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)))
115110, 114rspc2ev 3564 . 2 ((𝑉𝐽𝑈𝐽 ∧ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)) → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
11611, 15, 16, 17, 106, 115syl113anc 1380 1 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  ifcif 4456   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  +crp 12659   +𝑒 cxad 12775   ·e cxmu 12776  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  metnrm  23931
  Copyright terms: Public domain W3C validator