MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem3 Structured version   Visualization version   GIF version

Theorem metnrmlem3 24801
Description: Lemma for metnrm 24802. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
metnrmlem.g 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metnrmlem.v 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
Assertion
Ref Expression
metnrmlem3 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑡,𝑠,𝑤,𝑥,𝑦,𝑧,𝐷   𝐽,𝑠,𝑡,𝑤,𝑦,𝑧   𝜑,𝑠,𝑡   𝐺,𝑠,𝑡   𝑇,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝑈,𝑠,𝑤   𝑋,𝑠,𝑡,𝑤,𝑥,𝑦,𝑧   𝐹,𝑠,𝑡,𝑤,𝑧   𝑤,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑡)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥)   𝑉(𝑥,𝑦,𝑡,𝑠)

Proof of Theorem metnrmlem3
StepHypRef Expression
1 metnrmlem.g . . . 4 𝐺 = (𝑥𝑋 ↦ inf(ran (𝑦𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2 metdscn.j . . . 4 𝐽 = (MetOpen‘𝐷)
3 metnrmlem.1 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.3 . . . 4 (𝜑𝑇 ∈ (Clsd‘𝐽))
5 metnrmlem.2 . . . 4 (𝜑𝑆 ∈ (Clsd‘𝐽))
6 incom 4184 . . . . 5 (𝑇𝑆) = (𝑆𝑇)
7 metnrmlem.4 . . . . 5 (𝜑 → (𝑆𝑇) = ∅)
86, 7eqtrid 2782 . . . 4 (𝜑 → (𝑇𝑆) = ∅)
9 metnrmlem.v . . . 4 𝑉 = 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2))
101, 2, 3, 4, 5, 8, 9metnrmlem2 24800 . . 3 (𝜑 → (𝑉𝐽𝑆𝑉))
1110simpld 494 . 2 (𝜑𝑉𝐽)
12 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
13 metnrmlem.u . . . 4 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
1412, 2, 3, 5, 4, 7, 13metnrmlem2 24800 . . 3 (𝜑 → (𝑈𝐽𝑇𝑈))
1514simpld 494 . 2 (𝜑𝑈𝐽)
1610simprd 495 . 2 (𝜑𝑆𝑉)
1714simprd 495 . 2 (𝜑𝑇𝑈)
189ineq1i 4191 . . . 4 (𝑉𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
19 iunin1 5048 . . . 4 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ( 𝑠𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2018, 19eqtr4i 2761 . . 3 (𝑉𝑈) = 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈)
2113ineq2i 4192 . . . . . . . 8 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
22 iunin2 5047 . . . . . . . 8 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
2321, 22eqtr4i 2761 . . . . . . 7 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
243adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
25 eqid 2735 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
2625cldss 22967 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
275, 26syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 𝐽)
282mopnuni 24380 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
293, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
3027, 29sseqtrrd 3996 . . . . . . . . . . . . . 14 (𝜑𝑆𝑋)
3130sselda 3958 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠𝑋)
3231adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑠𝑋)
3325cldss 22967 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
344, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑇 𝐽)
3534, 29sseqtrrd 3996 . . . . . . . . . . . . . 14 (𝜑𝑇𝑋)
3635sselda 3958 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑋)
3736adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 𝑡𝑋)
381, 2, 3, 4, 5, 8metnrmlem1a 24798 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (0 < (𝐺𝑠) ∧ if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+))
3938simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4039adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ+)
4140rphalfcld 13063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ+)
4241rpxrd 13052 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ*)
4312, 2, 3, 5, 4, 7metnrmlem1a 24798 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4443adantrl 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
4544simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
4645rphalfcld 13063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
4746rpxrd 13052 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
4840rpred 13051 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ)
4948rehalfcld 12488 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ)
5045rpred 13051 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ)
5150rehalfcld 12488 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ)
5249, 51rexaddd 13250 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5348recnd 11263 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℂ)
5450recnd 11263 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℂ)
55 2cnd 12318 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℂ)
56 2ne0 12344 . . . . . . . . . . . . . . . 16 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ≠ 0)
5853, 54, 55, 57divdird 12055 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) + (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
5952, 58eqtr4d 2773 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) = ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2))
601, 2, 3, 4, 5, 8metnrmlem1 24799 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑠𝑆)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
6160ancom2s 650 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑡𝐷𝑠))
62 xmetsym 24286 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋𝑠𝑋) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6324, 37, 32, 62syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑡𝐷𝑠) = (𝑠𝐷𝑡))
6461, 63breqtrd 5145 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡))
6512, 2, 3, 5, 4, 7metnrmlem1 24799 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡))
6640rpxrd 13052 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ*)
6745rpxrd 13052 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*)
68 xmetcl 24270 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) → (𝑠𝐷𝑡) ∈ ℝ*)
6924, 32, 37, 68syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (𝑠𝐷𝑡) ∈ ℝ*)
70 xle2add 13275 . . . . . . . . . . . . . . . . 17 (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ∈ ℝ* ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ*) ∧ ((𝑠𝐷𝑡) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ*)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7166, 67, 69, 69, 70syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) ≤ (𝑠𝐷𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ≤ (𝑠𝐷𝑡)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡))))
7264, 65, 71mp2and 699 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ≤ ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
7348, 50readdcld 11264 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℝ)
7473recnd 11263 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) ∈ ℂ)
7574, 55, 57divcan2d 12019 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
76 2re 12314 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
7773rehalfcld 12488 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ)
78 rexmul 13287 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
7976, 77, 78sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (2 · ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)))
8048, 50rexaddd 13250 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
8175, 79, 803eqtr4d 2780 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) = (if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) +𝑒 if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))))
82 x2times 13315 . . . . . . . . . . . . . . . 16 ((𝑠𝐷𝑡) ∈ ℝ* → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8369, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e (𝑠𝐷𝑡)) = ((𝑠𝐷𝑡) +𝑒 (𝑠𝐷𝑡)))
8472, 81, 833brtr4d 5151 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡)))
8577rexrd 11285 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ*)
86 2rp 13013 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
8786a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → 2 ∈ ℝ+)
88 xlemul2 13307 . . . . . . . . . . . . . . 15 ((((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ∈ ℝ* ∧ (𝑠𝐷𝑡) ∈ ℝ* ∧ 2 ∈ ℝ+) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
8985, 69, 87, 88syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → (((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡) ↔ (2 ·e ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2)) ≤ (2 ·e (𝑠𝐷𝑡))))
9084, 89mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) + if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡))) / 2) ≤ (𝑠𝐷𝑡))
9159, 90eqbrtrd 5141 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))
92 bldisj 24337 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠𝑋𝑡𝑋) ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) ∈ ℝ* ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ* ∧ ((if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2) +𝑒 (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ≤ (𝑠𝐷𝑡))) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
9324, 32, 37, 42, 47, 91, 92syl33anc 1387 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅)
94 eqimss 4017 . . . . . . . . . . 11 (((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) = ∅ → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑠𝑆𝑡𝑇)) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9695anassrs 467 . . . . . . . . 9 (((𝜑𝑠𝑆) ∧ 𝑡𝑇) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9796ralrimiva 3132 . . . . . . . 8 ((𝜑𝑠𝑆) → ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
98 iunss 5021 . . . . . . . 8 ( 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅ ↔ ∀𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
9997, 98sylibr 234 . . . . . . 7 ((𝜑𝑠𝑆) → 𝑡𝑇 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))) ⊆ ∅)
10023, 99eqsstrid 3997 . . . . . 6 ((𝜑𝑠𝑆) → ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
101100ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
102 iunss 5021 . . . . 5 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ ↔ ∀𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
103101, 102sylibr 234 . . . 4 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅)
104 ss0 4377 . . . 4 ( 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) ⊆ ∅ → 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
105103, 104syl 17 . . 3 (𝜑 𝑠𝑆 ((𝑠(ball‘𝐷)(if(1 ≤ (𝐺𝑠), 1, (𝐺𝑠)) / 2)) ∩ 𝑈) = ∅)
10620, 105eqtrid 2782 . 2 (𝜑 → (𝑉𝑈) = ∅)
107 sseq2 3985 . . . 4 (𝑧 = 𝑉 → (𝑆𝑧𝑆𝑉))
108 ineq1 4188 . . . . 5 (𝑧 = 𝑉 → (𝑧𝑤) = (𝑉𝑤))
109108eqeq1d 2737 . . . 4 (𝑧 = 𝑉 → ((𝑧𝑤) = ∅ ↔ (𝑉𝑤) = ∅))
110107, 1093anbi13d 1440 . . 3 (𝑧 = 𝑉 → ((𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅)))
111 sseq2 3985 . . . 4 (𝑤 = 𝑈 → (𝑇𝑤𝑇𝑈))
112 ineq2 4189 . . . . 5 (𝑤 = 𝑈 → (𝑉𝑤) = (𝑉𝑈))
113112eqeq1d 2737 . . . 4 (𝑤 = 𝑈 → ((𝑉𝑤) = ∅ ↔ (𝑉𝑈) = ∅))
114111, 1133anbi23d 1441 . . 3 (𝑤 = 𝑈 → ((𝑆𝑉𝑇𝑤 ∧ (𝑉𝑤) = ∅) ↔ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)))
115110, 114rspc2ev 3614 . 2 ((𝑉𝐽𝑈𝐽 ∧ (𝑆𝑉𝑇𝑈 ∧ (𝑉𝑈) = ∅)) → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
11611, 15, 16, 17, 106, 115syl113anc 1384 1 (𝜑 → ∃𝑧𝐽𝑤𝐽 (𝑆𝑧𝑇𝑤 ∧ (𝑧𝑤) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  ifcif 4500   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  infcinf 9453  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008   +𝑒 cxad 13126   ·e cxmu 13127  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305  Clsdccld 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-ec 8721  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959
This theorem is referenced by:  metnrm  24802
  Copyright terms: Public domain W3C validator