MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyss Structured version   Visualization version   GIF version

Theorem llyss 21611
Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyss (𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵)

Proof of Theorem llyss
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3792 . . . . . . . 8 (𝐴𝐵 → ((𝑗t 𝑢) ∈ 𝐴 → (𝑗t 𝑢) ∈ 𝐵))
21anim2d 606 . . . . . . 7 (𝐴𝐵 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → (𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
32reximdv 3196 . . . . . 6 (𝐴𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
43ralimdv 3144 . . . . 5 (𝐴𝐵 → (∀𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∀𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
54ralimdv 3144 . . . 4 (𝐴𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
65anim2d 606 . . 3 (𝐴𝐵 → ((𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)) → (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵))))
7 islly 21600 . . 3 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
8 islly 21600 . . 3 (𝑗 ∈ Locally 𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
96, 7, 83imtr4g 288 . 2 (𝐴𝐵 → (𝑗 ∈ Locally 𝐴𝑗 ∈ Locally 𝐵))
109ssrdv 3804 1 (𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  wral 3089  wrex 3090  cin 3768  wss 3769  𝒫 cpw 4349  (class class class)co 6878  t crest 16396  Topctop 21026  Locally clly 21596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-ov 6881  df-lly 21598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator