![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > llyss | Structured version Visualization version GIF version |
Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
llyss | ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3941 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 → (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
2 | 1 | anim2d 613 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → ((𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → (𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
3 | 2 | reximdv 3164 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
4 | 3 | ralimdv 3163 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
5 | 4 | ralimdv 3163 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
6 | 5 | anim2d 613 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)) → (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵)))) |
7 | islly 22842 | . . 3 ⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴))) | |
8 | islly 22842 | . . 3 ⊢ (𝑗 ∈ Locally 𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) | |
9 | 6, 7, 8 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Locally 𝐵)) |
10 | 9 | ssrdv 3954 | 1 ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4564 (class class class)co 7361 ↾t crest 17310 Topctop 22265 Locally clly 22838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-iota 6452 df-fv 6508 df-ov 7364 df-lly 22840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |