MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyss Structured version   Visualization version   GIF version

Theorem llyss 23417
Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyss (𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵)

Proof of Theorem llyss
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3952 . . . . . . . 8 (𝐴𝐵 → ((𝑗t 𝑢) ∈ 𝐴 → (𝑗t 𝑢) ∈ 𝐵))
21anim2d 612 . . . . . . 7 (𝐴𝐵 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → (𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
32reximdv 3155 . . . . . 6 (𝐴𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
43ralimdv 3154 . . . . 5 (𝐴𝐵 → (∀𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∀𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
54ralimdv 3154 . . . 4 (𝐴𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
65anim2d 612 . . 3 (𝐴𝐵 → ((𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)) → (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵))))
7 islly 23406 . . 3 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
8 islly 23406 . . 3 (𝑗 ∈ Locally 𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐵)))
96, 7, 83imtr4g 296 . 2 (𝐴𝐵 → (𝑗 ∈ Locally 𝐴𝑗 ∈ Locally 𝐵))
109ssrdv 3964 1 (𝐴𝐵 → Locally 𝐴 ⊆ Locally 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575  (class class class)co 7405  t crest 17434  Topctop 22831  Locally clly 23402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-lly 23404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator