| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > llyss | Structured version Visualization version GIF version | ||
| Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| llyss | ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 → (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → ((𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → (𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
| 3 | 2 | reximdv 3147 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
| 4 | 3 | ralimdv 3146 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
| 5 | 4 | ralimdv 3146 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴) → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) |
| 6 | 5 | anim2d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)) → (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵)))) |
| 7 | islly 23378 | . . 3 ⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴))) | |
| 8 | islly 23378 | . . 3 ⊢ (𝑗 ∈ Locally 𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐵))) | |
| 9 | 6, 7, 8 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Locally 𝐵)) |
| 10 | 9 | ssrdv 3935 | 1 ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4545 (class class class)co 7341 ↾t crest 17319 Topctop 22803 Locally clly 23374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-lly 23376 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |