Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nllyss | Structured version Visualization version GIF version |
Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
nllyss | ⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3918 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 → (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
2 | 1 | reximdv 3203 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 → ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
3 | 2 | ralimdv 3105 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
4 | 3 | ralimdv 3105 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
5 | 4 | anim2d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴) → (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵))) |
6 | isnlly 22601 | . . 3 ⊢ (𝑗 ∈ 𝑛-Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴)) | |
7 | isnlly 22601 | . . 3 ⊢ (𝑗 ∈ 𝑛-Locally 𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) | |
8 | 5, 6, 7 | 3imtr4g 295 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ 𝑛-Locally 𝐵)) |
9 | 8 | ssrdv 3931 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ∩ cin 3890 ⊆ wss 3891 𝒫 cpw 4538 {csn 4566 ‘cfv 6430 (class class class)co 7268 ↾t crest 17112 Topctop 22023 neicnei 22229 𝑛-Locally cnlly 22597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-nlly 22599 |
This theorem is referenced by: iinllyconn 33195 cvmlift3 33269 |
Copyright terms: Public domain | W3C validator |