![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrrecval2 | Structured version Visualization version GIF version |
Description: Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecval2 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrrec.1 | . . 3 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
2 | 1 | lrrecval 27872 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) |
3 | lrold 27839 | . . . 4 ⊢ (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday ‘𝐵)) | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday ‘𝐵))) |
5 | 4 | eleq2d 2811 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) ↔ 𝐴 ∈ ( O ‘( bday ‘𝐵)))) |
6 | bdayelon 27725 | . . . 4 ⊢ ( bday ‘𝐵) ∈ On | |
7 | oldbday 27843 | . . . 4 ⊢ ((( bday ‘𝐵) ∈ On ∧ 𝐴 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | |
8 | 6, 7 | mpan 688 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
9 | 8 | adantr 479 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
10 | 2, 5, 9 | 3bitrd 304 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3937 class class class wbr 5141 {copab 5203 Oncon0 6362 ‘cfv 6541 No csur 27589 bday cbday 27591 O cold 27786 L cleft 27788 R cright 27789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-1o 8483 df-2o 8484 df-no 27592 df-slt 27593 df-bday 27594 df-sslt 27730 df-scut 27732 df-made 27790 df-old 27791 df-left 27793 df-right 27794 |
This theorem is referenced by: lrrecpo 27874 lrrecfr 27876 |
Copyright terms: Public domain | W3C validator |