| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecval2 | Structured version Visualization version GIF version | ||
| Description: Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecval2 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lrrec.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 2 | 1 | lrrecval 27877 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) |
| 3 | lrold 27837 | . . . 4 ⊢ (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday ‘𝐵)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday ‘𝐵))) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) ↔ 𝐴 ∈ ( O ‘( bday ‘𝐵)))) |
| 6 | bdayelon 27710 | . . . 4 ⊢ ( bday ‘𝐵) ∈ On | |
| 7 | oldbday 27841 | . . . 4 ⊢ ((( bday ‘𝐵) ∈ On ∧ 𝐴 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
| 10 | 2, 5, 9 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 class class class wbr 5086 {copab 5148 Oncon0 6301 ‘cfv 6476 No csur 27573 bday cbday 27575 O cold 27779 L cleft 27781 R cright 27782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27576 df-slt 27577 df-bday 27578 df-sslt 27716 df-scut 27718 df-made 27783 df-old 27784 df-left 27786 df-right 27787 |
| This theorem is referenced by: lrrecpo 27879 lrrecfr 27881 |
| Copyright terms: Public domain | W3C validator |