Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrpplusgaopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sgrpplusgaopALT | ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | issgrp 18291 | . 2 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
5 | fvex 6769 | . . 3 ⊢ (+g‘𝐺) ∈ V | |
6 | fvex 6769 | . . 3 ⊢ (Base‘𝐺) ∈ V | |
7 | isasslaw 45274 | . . 3 ⊢ (((+g‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) | |
8 | 5, 6, 7 | mp2an 688 | . 2 ⊢ ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
9 | 1, 4, 8 | 3imtr4i 291 | 1 ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mgmcmgm 18239 Smgrpcsgrp 18289 assLaw casslaw 45266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-iota 6376 df-fv 6426 df-ov 7258 df-sgrp 18290 df-asslaw 45270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |