Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgrpplusgaopALT Structured version   Visualization version   GIF version

Theorem sgrpplusgaopALT 48038
Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sgrpplusgaopALT (𝐺 ∈ Smgrp → (+g𝐺) assLaw (Base‘𝐺))

Proof of Theorem sgrpplusgaopALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2 eqid 2734 . . 3 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2734 . . 3 (+g𝐺) = (+g𝐺)
42, 3issgrp 18745 . 2 (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
5 fvex 6919 . . 3 (+g𝐺) ∈ V
6 fvex 6919 . . 3 (Base‘𝐺) ∈ V
7 isasslaw 48035 . . 3 (((+g𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((+g𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
85, 6, 7mp2an 692 . 2 ((+g𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
91, 4, 83imtr4i 292 1 (𝐺 ∈ Smgrp → (+g𝐺) assLaw (Base‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  Mgmcmgm 18663  Smgrpcsgrp 18743   assLaw casslaw 48027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-iota 6515  df-fv 6570  df-ov 7433  df-sgrp 18744  df-asslaw 48031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator