![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrpplusgaopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sgrpplusgaopALT | ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) | |
2 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | issgrp 18647 | . 2 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
5 | fvex 6905 | . . 3 ⊢ (+g‘𝐺) ∈ V | |
6 | fvex 6905 | . . 3 ⊢ (Base‘𝐺) ∈ V | |
7 | isasslaw 46870 | . . 3 ⊢ (((+g‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) | |
8 | 5, 6, 7 | mp2an 688 | . 2 ⊢ ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
9 | 1, 4, 8 | 3imtr4i 291 | 1 ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 class class class wbr 5149 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 +gcplusg 17203 Mgmcmgm 18565 Smgrpcsgrp 18645 assLaw casslaw 46862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-iota 6496 df-fv 6552 df-ov 7416 df-sgrp 18646 df-asslaw 46866 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |