![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrpplusgaopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sgrpplusgaopALT | ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) | |
2 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | issgrp 18552 | . 2 ⊢ (𝐺 ∈ Smgrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
5 | fvex 6856 | . . 3 ⊢ (+g‘𝐺) ∈ V | |
6 | fvex 6856 | . . 3 ⊢ (Base‘𝐺) ∈ V | |
7 | isasslaw 46212 | . . 3 ⊢ (((+g‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) | |
8 | 5, 6, 7 | mp2an 691 | . 2 ⊢ ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
9 | 1, 4, 8 | 3imtr4i 292 | 1 ⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 Mgmcmgm 18500 Smgrpcsgrp 18550 assLaw casslaw 46204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-iota 6449 df-fv 6505 df-ov 7361 df-sgrp 18551 df-asslaw 46208 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |