MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moriotass Structured version   Visualization version   GIF version

Theorem moriotass 7398
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 4052 . . . . 5 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
21imp 408 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐵 𝜑)
323adant3 1133 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃𝑥𝐵 𝜑)
4 simp3 1139 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃*𝑥𝐵 𝜑)
5 reu5 3379 . . 3 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 5sylanbrc 584 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
7 riotass 7397 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
86, 7syld3an3 1410 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wrex 3071  ∃!wreu 3375  ∃*wrmo 3376  wss 3949  crio 7364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632  df-uni 4910  df-iota 6496  df-riota 7365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator