Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moriotass | Structured version Visualization version GIF version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
moriotass | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3984 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | |
2 | 1 | imp 406 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
4 | simp3 1136 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → ∃*𝑥 ∈ 𝐵 𝜑) | |
5 | reu5 3351 | . . 3 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | |
6 | 3, 4, 5 | sylanbrc 582 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐵 𝜑) |
7 | riotass 7244 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | |
8 | 6, 7 | syld3an3 1407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 ⊆ wss 3883 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |