![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unfilem2 | Structured version Visualization version GIF version |
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
unfilem1.1 | ⊢ 𝐴 ∈ ω |
unfilem1.2 | ⊢ 𝐵 ∈ ω |
unfilem1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) |
Ref | Expression |
---|---|
unfilem2 | ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6823 | . . . . . 6 ⊢ (𝐴 +𝑜 𝑥) ∈ V | |
2 | unfilem1.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) | |
3 | 1, 2 | fnmpti 6162 | . . . . 5 ⊢ 𝐹 Fn 𝐵 |
4 | unfilem1.1 | . . . . . 6 ⊢ 𝐴 ∈ ω | |
5 | unfilem1.2 | . . . . . 6 ⊢ 𝐵 ∈ ω | |
6 | 4, 5, 2 | unfilem1 8380 | . . . . 5 ⊢ ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴) |
7 | df-fo 6037 | . . . . 5 ⊢ (𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴))) | |
8 | 3, 6, 7 | mpbir2an 690 | . . . 4 ⊢ 𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
9 | fof 6256 | . . . 4 ⊢ (𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ 𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴) |
11 | oveq2 6801 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑧)) | |
12 | ovex 6823 | . . . . . . . 8 ⊢ (𝐴 +𝑜 𝑧) ∈ V | |
13 | 11, 2, 12 | fvmpt 6424 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = (𝐴 +𝑜 𝑧)) |
14 | oveq2 6801 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑤)) | |
15 | ovex 6823 | . . . . . . . 8 ⊢ (𝐴 +𝑜 𝑤) ∈ V | |
16 | 14, 2, 15 | fvmpt 6424 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → (𝐹‘𝑤) = (𝐴 +𝑜 𝑤)) |
17 | 13, 16 | eqeqan12d 2787 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤))) |
18 | elnn 7222 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑧 ∈ ω) | |
19 | 5, 18 | mpan2 671 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ω) |
20 | elnn 7222 | . . . . . . . 8 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑤 ∈ ω) | |
21 | 5, 20 | mpan2 671 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ω) |
22 | nnacan 7862 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) | |
23 | 4, 22 | mp3an1 1559 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) |
24 | 19, 21, 23 | syl2an 583 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) |
25 | 17, 24 | bitrd 268 | . . . . 5 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
26 | 25 | biimpd 219 | . . . 4 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
27 | 26 | rgen2a 3126 | . . 3 ⊢ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
28 | dff13 6655 | . . 3 ⊢ (𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
29 | 10, 27, 28 | mpbir2an 690 | . 2 ⊢ 𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
30 | df-f1o 6038 | . 2 ⊢ (𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴))) | |
31 | 29, 8, 30 | mpbir2an 690 | 1 ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∖ cdif 3720 ↦ cmpt 4863 ran crn 5250 Fn wfn 6026 ⟶wf 6027 –1-1→wf1 6028 –onto→wfo 6029 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6793 ωcom 7212 +𝑜 coa 7710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-oadd 7717 |
This theorem is referenced by: unfilem3 8382 |
Copyright terms: Public domain | W3C validator |