| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unfilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| unfilem1.1 | ⊢ 𝐴 ∈ ω |
| unfilem1.2 | ⊢ 𝐵 ∈ ω |
| unfilem1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) |
| Ref | Expression |
|---|---|
| unfilem2 | ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7438 | . . . . . 6 ⊢ (𝐴 +o 𝑥) ∈ V | |
| 2 | unfilem1.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
| 3 | 1, 2 | fnmpti 6681 | . . . . 5 ⊢ 𝐹 Fn 𝐵 |
| 4 | unfilem1.1 | . . . . . 6 ⊢ 𝐴 ∈ ω | |
| 5 | unfilem1.2 | . . . . . 6 ⊢ 𝐵 ∈ ω | |
| 6 | 4, 5, 2 | unfilem1 9315 | . . . . 5 ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) |
| 7 | df-fo 6537 | . . . . 5 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴))) | |
| 8 | 3, 6, 7 | mpbir2an 711 | . . . 4 ⊢ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| 9 | fof 6790 | . . . 4 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) |
| 11 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧)) | |
| 12 | ovex 7438 | . . . . . . . 8 ⊢ (𝐴 +o 𝑧) ∈ V | |
| 13 | 11, 2, 12 | fvmpt 6986 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = (𝐴 +o 𝑧)) |
| 14 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤)) | |
| 15 | ovex 7438 | . . . . . . . 8 ⊢ (𝐴 +o 𝑤) ∈ V | |
| 16 | 14, 2, 15 | fvmpt 6986 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → (𝐹‘𝑤) = (𝐴 +o 𝑤)) |
| 17 | 13, 16 | eqeqan12d 2749 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤))) |
| 18 | elnn 7872 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑧 ∈ ω) | |
| 19 | 5, 18 | mpan2 691 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ω) |
| 20 | elnn 7872 | . . . . . . . 8 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑤 ∈ ω) | |
| 21 | 5, 20 | mpan2 691 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ω) |
| 22 | nnacan 8640 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) | |
| 23 | 4, 19, 21, 22 | mp3an3an 1469 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) |
| 24 | 17, 23 | bitrd 279 | . . . . 5 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
| 25 | 24 | biimpd 229 | . . . 4 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 26 | 25 | rgen2 3184 | . . 3 ⊢ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
| 27 | dff13 7247 | . . 3 ⊢ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
| 28 | 10, 26, 27 | mpbir2an 711 | . 2 ⊢ 𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) |
| 29 | df-f1o 6538 | . 2 ⊢ (𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴))) | |
| 30 | 28, 8, 29 | mpbir2an 711 | 1 ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ↦ cmpt 5201 ran crn 5655 Fn wfn 6526 ⟶wf 6527 –1-1→wf1 6528 –onto→wfo 6529 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ωcom 7861 +o coa 8477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 |
| This theorem is referenced by: unfilem3 9317 |
| Copyright terms: Public domain | W3C validator |