MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Visualization version   GIF version

Theorem unfilem2 9262
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem2 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7423 . . . . . 6 (𝐴 +o 𝑥) ∈ V
2 unfilem1.3 . . . . . 6 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
31, 2fnmpti 6664 . . . . 5 𝐹 Fn 𝐵
4 unfilem1.1 . . . . . 6 𝐴 ∈ ω
5 unfilem1.2 . . . . . 6 𝐵 ∈ ω
64, 5, 2unfilem1 9261 . . . . 5 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
7 df-fo 6520 . . . . 5 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)))
83, 6, 7mpbir2an 711 . . . 4 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)
9 fof 6775 . . . 4 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴))
108, 9ax-mp 5 . . 3 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)
11 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧))
12 ovex 7423 . . . . . . . 8 (𝐴 +o 𝑧) ∈ V
1311, 2, 12fvmpt 6971 . . . . . . 7 (𝑧𝐵 → (𝐹𝑧) = (𝐴 +o 𝑧))
14 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤))
15 ovex 7423 . . . . . . . 8 (𝐴 +o 𝑤) ∈ V
1614, 2, 15fvmpt 6971 . . . . . . 7 (𝑤𝐵 → (𝐹𝑤) = (𝐴 +o 𝑤))
1713, 16eqeqan12d 2744 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤)))
18 elnn 7856 . . . . . . . 8 ((𝑧𝐵𝐵 ∈ ω) → 𝑧 ∈ ω)
195, 18mpan2 691 . . . . . . 7 (𝑧𝐵𝑧 ∈ ω)
20 elnn 7856 . . . . . . . 8 ((𝑤𝐵𝐵 ∈ ω) → 𝑤 ∈ ω)
215, 20mpan2 691 . . . . . . 7 (𝑤𝐵𝑤 ∈ ω)
22 nnacan 8595 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
234, 19, 21, 22mp3an3an 1469 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
2417, 23bitrd 279 . . . . 5 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
2524biimpd 229 . . . 4 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
2625rgen2 3178 . . 3 𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
27 dff13 7232 . . 3 (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
2810, 26, 27mpbir2an 711 . 2 𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴)
29 df-f1o 6521 . 2 (𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)))
3028, 8, 29mpbir2an 711 1 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  unfilem3  9263
  Copyright terms: Public domain W3C validator