| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unfilem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| unfilem1.1 | ⊢ 𝐴 ∈ ω |
| unfilem1.2 | ⊢ 𝐵 ∈ ω |
| unfilem1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) |
| Ref | Expression |
|---|---|
| unfilem2 | ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7382 | . . . . . 6 ⊢ (𝐴 +o 𝑥) ∈ V | |
| 2 | unfilem1.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
| 3 | 1, 2 | fnmpti 6625 | . . . . 5 ⊢ 𝐹 Fn 𝐵 |
| 4 | unfilem1.1 | . . . . . 6 ⊢ 𝐴 ∈ ω | |
| 5 | unfilem1.2 | . . . . . 6 ⊢ 𝐵 ∈ ω | |
| 6 | 4, 5, 2 | unfilem1 9194 | . . . . 5 ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) |
| 7 | df-fo 6488 | . . . . 5 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴))) | |
| 8 | 3, 6, 7 | mpbir2an 711 | . . . 4 ⊢ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| 9 | fof 6736 | . . . 4 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) |
| 11 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧)) | |
| 12 | ovex 7382 | . . . . . . . 8 ⊢ (𝐴 +o 𝑧) ∈ V | |
| 13 | 11, 2, 12 | fvmpt 6930 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = (𝐴 +o 𝑧)) |
| 14 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤)) | |
| 15 | ovex 7382 | . . . . . . . 8 ⊢ (𝐴 +o 𝑤) ∈ V | |
| 16 | 14, 2, 15 | fvmpt 6930 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → (𝐹‘𝑤) = (𝐴 +o 𝑤)) |
| 17 | 13, 16 | eqeqan12d 2743 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤))) |
| 18 | elnn 7810 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑧 ∈ ω) | |
| 19 | 5, 18 | mpan2 691 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ω) |
| 20 | elnn 7810 | . . . . . . . 8 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑤 ∈ ω) | |
| 21 | 5, 20 | mpan2 691 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ω) |
| 22 | nnacan 8546 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) | |
| 23 | 4, 19, 21, 22 | mp3an3an 1469 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) |
| 24 | 17, 23 | bitrd 279 | . . . . 5 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
| 25 | 24 | biimpd 229 | . . . 4 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 26 | 25 | rgen2 3169 | . . 3 ⊢ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
| 27 | dff13 7191 | . . 3 ⊢ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
| 28 | 10, 26, 27 | mpbir2an 711 | . 2 ⊢ 𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) |
| 29 | df-f1o 6489 | . 2 ⊢ (𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴))) | |
| 30 | 28, 8, 29 | mpbir2an 711 | 1 ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ↦ cmpt 5173 ran crn 5620 Fn wfn 6477 ⟶wf 6478 –1-1→wf1 6479 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ωcom 7799 +o coa 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-oadd 8392 |
| This theorem is referenced by: unfilem3 9196 |
| Copyright terms: Public domain | W3C validator |