MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Visualization version   GIF version

Theorem unfilem2 9040
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem2 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7301 . . . . . 6 (𝐴 +o 𝑥) ∈ V
2 unfilem1.3 . . . . . 6 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
31, 2fnmpti 6572 . . . . 5 𝐹 Fn 𝐵
4 unfilem1.1 . . . . . 6 𝐴 ∈ ω
5 unfilem1.2 . . . . . 6 𝐵 ∈ ω
64, 5, 2unfilem1 9039 . . . . 5 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
7 df-fo 6436 . . . . 5 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)))
83, 6, 7mpbir2an 707 . . . 4 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)
9 fof 6684 . . . 4 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴))
108, 9ax-mp 5 . . 3 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)
11 oveq2 7276 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧))
12 ovex 7301 . . . . . . . 8 (𝐴 +o 𝑧) ∈ V
1311, 2, 12fvmpt 6869 . . . . . . 7 (𝑧𝐵 → (𝐹𝑧) = (𝐴 +o 𝑧))
14 oveq2 7276 . . . . . . . 8 (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤))
15 ovex 7301 . . . . . . . 8 (𝐴 +o 𝑤) ∈ V
1614, 2, 15fvmpt 6869 . . . . . . 7 (𝑤𝐵 → (𝐹𝑤) = (𝐴 +o 𝑤))
1713, 16eqeqan12d 2753 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤)))
18 elnn 7711 . . . . . . . 8 ((𝑧𝐵𝐵 ∈ ω) → 𝑧 ∈ ω)
195, 18mpan2 687 . . . . . . 7 (𝑧𝐵𝑧 ∈ ω)
20 elnn 7711 . . . . . . . 8 ((𝑤𝐵𝐵 ∈ ω) → 𝑤 ∈ ω)
215, 20mpan2 687 . . . . . . 7 (𝑤𝐵𝑤 ∈ ω)
22 nnacan 8435 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
234, 19, 21, 22mp3an3an 1465 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
2417, 23bitrd 278 . . . . 5 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
2524biimpd 228 . . . 4 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
2625rgen2 3128 . . 3 𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
27 dff13 7122 . . 3 (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
2810, 26, 27mpbir2an 707 . 2 𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴)
29 df-f1o 6437 . 2 (𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)))
3028, 8, 29mpbir2an 707 1 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  cdif 3888  cmpt 5161  ran crn 5589   Fn wfn 6425  wf 6426  1-1wf1 6427  ontowfo 6428  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  ωcom 7700   +o coa 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-oadd 8285
This theorem is referenced by:  unfilem3  9041
  Copyright terms: Public domain W3C validator