Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unfilem2 | Structured version Visualization version GIF version |
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
unfilem1.1 | ⊢ 𝐴 ∈ ω |
unfilem1.2 | ⊢ 𝐵 ∈ ω |
unfilem1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) |
Ref | Expression |
---|---|
unfilem2 | ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7340 | . . . . . 6 ⊢ (𝐴 +o 𝑥) ∈ V | |
2 | unfilem1.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
3 | 1, 2 | fnmpti 6606 | . . . . 5 ⊢ 𝐹 Fn 𝐵 |
4 | unfilem1.1 | . . . . . 6 ⊢ 𝐴 ∈ ω | |
5 | unfilem1.2 | . . . . . 6 ⊢ 𝐵 ∈ ω | |
6 | 4, 5, 2 | unfilem1 9126 | . . . . 5 ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) |
7 | df-fo 6464 | . . . . 5 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴))) | |
8 | 3, 6, 7 | mpbir2an 709 | . . . 4 ⊢ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) |
9 | fof 6718 | . . . 4 ⊢ (𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) |
11 | oveq2 7315 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧)) | |
12 | ovex 7340 | . . . . . . . 8 ⊢ (𝐴 +o 𝑧) ∈ V | |
13 | 11, 2, 12 | fvmpt 6907 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = (𝐴 +o 𝑧)) |
14 | oveq2 7315 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤)) | |
15 | ovex 7340 | . . . . . . . 8 ⊢ (𝐴 +o 𝑤) ∈ V | |
16 | 14, 2, 15 | fvmpt 6907 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → (𝐹‘𝑤) = (𝐴 +o 𝑤)) |
17 | 13, 16 | eqeqan12d 2750 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤))) |
18 | elnn 7755 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑧 ∈ ω) | |
19 | 5, 18 | mpan2 689 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ω) |
20 | elnn 7755 | . . . . . . . 8 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑤 ∈ ω) | |
21 | 5, 20 | mpan2 689 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ω) |
22 | nnacan 8490 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) | |
23 | 4, 19, 21, 22 | mp3an3an 1467 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤)) |
24 | 17, 23 | bitrd 279 | . . . . 5 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
25 | 24 | biimpd 228 | . . . 4 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
26 | 25 | rgen2 3190 | . . 3 ⊢ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
27 | dff13 7160 | . . 3 ⊢ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
28 | 10, 26, 27 | mpbir2an 709 | . 2 ⊢ 𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) |
29 | df-f1o 6465 | . 2 ⊢ (𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵–1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵–onto→((𝐴 +o 𝐵) ∖ 𝐴))) | |
30 | 28, 8, 29 | mpbir2an 709 | 1 ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3061 ∖ cdif 3889 ↦ cmpt 5164 ran crn 5601 Fn wfn 6453 ⟶wf 6454 –1-1→wf1 6455 –onto→wfo 6456 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 ωcom 7744 +o coa 8325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-oadd 8332 |
This theorem is referenced by: unfilem3 9128 |
Copyright terms: Public domain | W3C validator |