MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Visualization version   GIF version

Theorem unfilem2 9255
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem2 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . . . . 6 (𝐴 +o 𝑥) ∈ V
2 unfilem1.3 . . . . . 6 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
31, 2fnmpti 6661 . . . . 5 𝐹 Fn 𝐵
4 unfilem1.1 . . . . . 6 𝐴 ∈ ω
5 unfilem1.2 . . . . . 6 𝐵 ∈ ω
64, 5, 2unfilem1 9254 . . . . 5 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
7 df-fo 6517 . . . . 5 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)))
83, 6, 7mpbir2an 711 . . . 4 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)
9 fof 6772 . . . 4 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴))
108, 9ax-mp 5 . . 3 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)
11 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧))
12 ovex 7420 . . . . . . . 8 (𝐴 +o 𝑧) ∈ V
1311, 2, 12fvmpt 6968 . . . . . . 7 (𝑧𝐵 → (𝐹𝑧) = (𝐴 +o 𝑧))
14 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤))
15 ovex 7420 . . . . . . . 8 (𝐴 +o 𝑤) ∈ V
1614, 2, 15fvmpt 6968 . . . . . . 7 (𝑤𝐵 → (𝐹𝑤) = (𝐴 +o 𝑤))
1713, 16eqeqan12d 2743 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤)))
18 elnn 7853 . . . . . . . 8 ((𝑧𝐵𝐵 ∈ ω) → 𝑧 ∈ ω)
195, 18mpan2 691 . . . . . . 7 (𝑧𝐵𝑧 ∈ ω)
20 elnn 7853 . . . . . . . 8 ((𝑤𝐵𝐵 ∈ ω) → 𝑤 ∈ ω)
215, 20mpan2 691 . . . . . . 7 (𝑤𝐵𝑤 ∈ ω)
22 nnacan 8592 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
234, 19, 21, 22mp3an3an 1469 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
2417, 23bitrd 279 . . . . 5 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
2524biimpd 229 . . . 4 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
2625rgen2 3177 . . 3 𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
27 dff13 7229 . . 3 (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
2810, 26, 27mpbir2an 711 . 2 𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴)
29 df-f1o 6518 . 2 (𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)))
3028, 8, 29mpbir2an 711 1 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3911  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842   +o coa 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438
This theorem is referenced by:  unfilem3  9256
  Copyright terms: Public domain W3C validator