![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2i | Structured version Visualization version GIF version |
Description: mp3an 1586 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an2i.1 | ⊢ 𝜑 |
mp3an2i.2 | ⊢ (𝜓 → 𝜒) |
mp3an2i.3 | ⊢ (𝜓 → 𝜃) |
mp3an2i.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an2i | ⊢ (𝜓 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2i.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an2i.3 | . 2 ⊢ (𝜓 → 𝜃) | |
3 | mp3an2i.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an2i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | mp3an1 1573 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
6 | 1, 2, 5 | syl2anc 580 | 1 ⊢ (𝜓 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: nnledivrp 12183 wrdlen2i 14024 sqrlem7 14327 0.999... 14947 fsumcube 15124 sin01gt0 15253 cos01gt0 15254 3dvds 15388 nno 15431 divgcdodd 15752 cnaddinv 18586 opsrtoslem2 19804 frgpcyg 20240 pt1hmeo 21935 metustid 22684 cnheiborlem 23078 lgsqrlem4 25423 gausslemma2dlem4 25443 lgsquad2lem2 25459 wlkp1lem3 26920 wlkp1lem7 26924 wlkp1lem8 26925 pthdlem1 27012 conngrv2edg 27531 cvmlift2lem10 31803 frrlem11 32297 nosupbday 32356 itg2gt0cn 33945 enrelmap 39061 k0004lem3 39217 sineq0ALT 39921 xlimconst 40783 odz2prm2pw 42245 fmtno4prmfac 42254 lighneallem3 42294 lighneallem4a 42295 lighneallem4 42297 |
Copyright terms: Public domain | W3C validator |