| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrsub | Structured version Visualization version GIF version | ||
| Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrsub.1 | ⊢ 𝑀 = (deg‘𝐹) |
| dgrsub.2 | ⊢ 𝑁 = (deg‘𝐺) |
| Ref | Expression |
|---|---|
| dgrsub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 26132 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | 1 | sseli 3925 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
| 3 | ssid 3952 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 4 | neg1cn 12110 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 5 | plyconst 26138 | . . . . 5 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
| 7 | 1 | sseli 3925 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
| 8 | plymulcl 26153 | . . . 4 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
| 10 | dgrsub.1 | . . . 4 ⊢ 𝑀 = (deg‘𝐹) | |
| 11 | eqid 2731 | . . . 4 ⊢ (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘((ℂ × {-1}) ∘f · 𝐺)) | |
| 12 | 10, 11 | dgradd 26200 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
| 13 | 2, 9, 12 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
| 14 | cnex 11087 | . . . 4 ⊢ ℂ ∈ V | |
| 15 | plyf 26130 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 16 | plyf 26130 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 17 | ofnegsub 12123 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 18 | 14, 15, 16, 17 | mp3an3an 1469 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 19 | 18 | fveq2d 6826 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (deg‘(𝐹 ∘f − 𝐺))) |
| 20 | neg1ne0 12112 | . . . . . . 7 ⊢ -1 ≠ 0 | |
| 21 | dgrmulc 26204 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) | |
| 22 | 4, 20, 21 | mp3an12 1453 | . . . . . 6 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) |
| 23 | dgrsub.2 | . . . . . 6 ⊢ 𝑁 = (deg‘𝐺) | |
| 24 | 22, 23 | eqtr4di 2784 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
| 25 | 24 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
| 26 | 25 | breq2d 5101 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)) ↔ 𝑀 ≤ 𝑁)) |
| 27 | 26, 25 | ifbieq1d 4497 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 28 | 13, 19, 27 | 3brtr3d 5120 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ifcif 4472 {csn 4573 class class class wbr 5089 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 -cneg 11345 Polycply 26116 degcdgr 26119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-0p 25598 df-ply 26120 df-coe 26122 df-dgr 26123 |
| This theorem is referenced by: dgrcolem2 26207 plydivlem4 26231 plydiveu 26233 dgrsub2 43238 |
| Copyright terms: Public domain | W3C validator |