MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrsub Structured version   Visualization version   GIF version

Theorem dgrsub 24789
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
dgrsub.1 𝑀 = (deg‘𝐹)
dgrsub.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrsub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))

Proof of Theorem dgrsub
StepHypRef Expression
1 plyssc 24717 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3960 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 ssid 3986 . . . . 5 ℂ ⊆ ℂ
4 neg1cn 11739 . . . . 5 -1 ∈ ℂ
5 plyconst 24723 . . . . 5 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
63, 4, 5mp2an 688 . . . 4 (ℂ × {-1}) ∈ (Poly‘ℂ)
71sseli 3960 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 plymulcl 24738 . . . 4 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
96, 7, 8sylancr 587 . . 3 (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
10 dgrsub.1 . . . 4 𝑀 = (deg‘𝐹)
11 eqid 2818 . . . 4 (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘((ℂ × {-1}) ∘f · 𝐺))
1210, 11dgradd 24784 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀))
132, 9, 12syl2an 595 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀))
14 cnex 10606 . . . 4 ℂ ∈ V
15 plyf 24715 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
16 plyf 24715 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
17 ofnegsub 11624 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
1814, 15, 16, 17mp3an3an 1458 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
1918fveq2d 6667 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (deg‘(𝐹f𝐺)))
20 neg1ne0 11741 . . . . . . 7 -1 ≠ 0
21 dgrmulc 24788 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺))
224, 20, 21mp3an12 1442 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺))
23 dgrsub.2 . . . . . 6 𝑁 = (deg‘𝐺)
2422, 23syl6eqr 2871 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁)
2524adantl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁)
2625breq2d 5069 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)) ↔ 𝑀𝑁))
2726, 25ifbieq1d 4486 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀) = if(𝑀𝑁, 𝑁, 𝑀))
2813, 19, 273brtr3d 5088 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  wss 3933  ifcif 4463  {csn 4557   class class class wbr 5057   × cxp 5546  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  cmin 10858  -cneg 10859  Polycply 24701  degcdgr 24704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-0p 24198  df-ply 24705  df-coe 24707  df-dgr 24708
This theorem is referenced by:  dgrcolem2  24791  plydivlem4  24812  plydiveu  24814  dgrsub2  39613
  Copyright terms: Public domain W3C validator