![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrsub | Structured version Visualization version GIF version |
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
dgrsub.1 | ⊢ 𝑀 = (deg‘𝐹) |
dgrsub.2 | ⊢ 𝑁 = (deg‘𝐺) |
Ref | Expression |
---|---|
dgrsub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 26052 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3978 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | ssid 4004 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
4 | neg1cn 12333 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | plyconst 26058 | . . . . 5 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
6 | 3, 4, 5 | mp2an 689 | . . . 4 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
7 | 1 | sseli 3978 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
8 | plymulcl 26073 | . . . 4 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
9 | 6, 7, 8 | sylancr 586 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
10 | dgrsub.1 | . . . 4 ⊢ 𝑀 = (deg‘𝐹) | |
11 | eqid 2731 | . . . 4 ⊢ (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘((ℂ × {-1}) ∘f · 𝐺)) | |
12 | 10, 11 | dgradd 26120 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
13 | 2, 9, 12 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
14 | cnex 11197 | . . . 4 ⊢ ℂ ∈ V | |
15 | plyf 26050 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
16 | plyf 26050 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
17 | ofnegsub 12217 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
18 | 14, 15, 16, 17 | mp3an3an 1466 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
19 | 18 | fveq2d 6895 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (deg‘(𝐹 ∘f − 𝐺))) |
20 | neg1ne0 12335 | . . . . . . 7 ⊢ -1 ≠ 0 | |
21 | dgrmulc 26124 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) | |
22 | 4, 20, 21 | mp3an12 1450 | . . . . . 6 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) |
23 | dgrsub.2 | . . . . . 6 ⊢ 𝑁 = (deg‘𝐺) | |
24 | 22, 23 | eqtr4di 2789 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
25 | 24 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
26 | 25 | breq2d 5160 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)) ↔ 𝑀 ≤ 𝑁)) |
27 | 26, 25 | ifbieq1d 4552 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
28 | 13, 19, 27 | 3brtr3d 5179 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ⊆ wss 3948 ifcif 4528 {csn 4628 class class class wbr 5148 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 ℂcc 11114 0cc0 11116 1c1 11117 + caddc 11119 · cmul 11121 ≤ cle 11256 − cmin 11451 -cneg 11452 Polycply 26036 degcdgr 26039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-0p 25519 df-ply 26040 df-coe 26042 df-dgr 26043 |
This theorem is referenced by: dgrcolem2 26127 plydivlem4 26148 plydiveu 26150 dgrsub2 42340 |
Copyright terms: Public domain | W3C validator |