MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrsub Structured version   Visualization version   GIF version

Theorem dgrsub 26154
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
dgrsub.1 𝑀 = (deg‘𝐹)
dgrsub.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrsub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))

Proof of Theorem dgrsub
StepHypRef Expression
1 plyssc 26081 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3939 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 ssid 3966 . . . . 5 ℂ ⊆ ℂ
4 neg1cn 12147 . . . . 5 -1 ∈ ℂ
5 plyconst 26087 . . . . 5 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
63, 4, 5mp2an 692 . . . 4 (ℂ × {-1}) ∈ (Poly‘ℂ)
71sseli 3939 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 plymulcl 26102 . . . 4 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
96, 7, 8sylancr 587 . . 3 (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
10 dgrsub.1 . . . 4 𝑀 = (deg‘𝐹)
11 eqid 2729 . . . 4 (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘((ℂ × {-1}) ∘f · 𝐺))
1210, 11dgradd 26149 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀))
132, 9, 12syl2an 596 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀))
14 cnex 11125 . . . 4 ℂ ∈ V
15 plyf 26079 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
16 plyf 26079 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
17 ofnegsub 12160 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
1814, 15, 16, 17mp3an3an 1469 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
1918fveq2d 6844 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (deg‘(𝐹f𝐺)))
20 neg1ne0 12149 . . . . . . 7 -1 ≠ 0
21 dgrmulc 26153 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺))
224, 20, 21mp3an12 1453 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺))
23 dgrsub.2 . . . . . 6 𝑁 = (deg‘𝐺)
2422, 23eqtr4di 2782 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁)
2524adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁)
2625breq2d 5114 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)) ↔ 𝑀𝑁))
2726, 25ifbieq1d 4509 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀) = if(𝑀𝑁, 𝑁, 𝑀))
2813, 19, 273brtr3d 5133 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  -cneg 11382  Polycply 26065  degcdgr 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25547  df-ply 26069  df-coe 26071  df-dgr 26072
This theorem is referenced by:  dgrcolem2  26156  plydivlem4  26180  plydiveu  26182  dgrsub2  43097
  Copyright terms: Public domain W3C validator