![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrsub | Structured version Visualization version GIF version |
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
dgrsub.1 | β’ π = (degβπΉ) |
dgrsub.2 | β’ π = (degβπΊ) |
Ref | Expression |
---|---|
dgrsub | β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (degβ(πΉ βf β πΊ)) β€ if(π β€ π, π, π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25948 | . . . 4 β’ (Polyβπ) β (Polyββ) | |
2 | 1 | sseli 3979 | . . 3 β’ (πΉ β (Polyβπ) β πΉ β (Polyββ)) |
3 | ssid 4005 | . . . . 5 β’ β β β | |
4 | neg1cn 12332 | . . . . 5 β’ -1 β β | |
5 | plyconst 25954 | . . . . 5 β’ ((β β β β§ -1 β β) β (β Γ {-1}) β (Polyββ)) | |
6 | 3, 4, 5 | mp2an 688 | . . . 4 β’ (β Γ {-1}) β (Polyββ) |
7 | 1 | sseli 3979 | . . . 4 β’ (πΊ β (Polyβπ) β πΊ β (Polyββ)) |
8 | plymulcl 25969 | . . . 4 β’ (((β Γ {-1}) β (Polyββ) β§ πΊ β (Polyββ)) β ((β Γ {-1}) βf Β· πΊ) β (Polyββ)) | |
9 | 6, 7, 8 | sylancr 585 | . . 3 β’ (πΊ β (Polyβπ) β ((β Γ {-1}) βf Β· πΊ) β (Polyββ)) |
10 | dgrsub.1 | . . . 4 β’ π = (degβπΉ) | |
11 | eqid 2730 | . . . 4 β’ (degβ((β Γ {-1}) βf Β· πΊ)) = (degβ((β Γ {-1}) βf Β· πΊ)) | |
12 | 10, 11 | dgradd 26015 | . . 3 β’ ((πΉ β (Polyββ) β§ ((β Γ {-1}) βf Β· πΊ) β (Polyββ)) β (degβ(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) β€ if(π β€ (degβ((β Γ {-1}) βf Β· πΊ)), (degβ((β Γ {-1}) βf Β· πΊ)), π)) |
13 | 2, 9, 12 | syl2an 594 | . 2 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (degβ(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) β€ if(π β€ (degβ((β Γ {-1}) βf Β· πΊ)), (degβ((β Γ {-1}) βf Β· πΊ)), π)) |
14 | cnex 11195 | . . . 4 β’ β β V | |
15 | plyf 25946 | . . . 4 β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) | |
16 | plyf 25946 | . . . 4 β’ (πΊ β (Polyβπ) β πΊ:ββΆβ) | |
17 | ofnegsub 12216 | . . . 4 β’ ((β β V β§ πΉ:ββΆβ β§ πΊ:ββΆβ) β (πΉ βf + ((β Γ {-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) | |
18 | 14, 15, 16, 17 | mp3an3an 1465 | . . 3 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (πΉ βf + ((β Γ {-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) |
19 | 18 | fveq2d 6896 | . 2 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (degβ(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) = (degβ(πΉ βf β πΊ))) |
20 | neg1ne0 12334 | . . . . . . 7 β’ -1 β 0 | |
21 | dgrmulc 26019 | . . . . . . 7 β’ ((-1 β β β§ -1 β 0 β§ πΊ β (Polyβπ)) β (degβ((β Γ {-1}) βf Β· πΊ)) = (degβπΊ)) | |
22 | 4, 20, 21 | mp3an12 1449 | . . . . . 6 β’ (πΊ β (Polyβπ) β (degβ((β Γ {-1}) βf Β· πΊ)) = (degβπΊ)) |
23 | dgrsub.2 | . . . . . 6 β’ π = (degβπΊ) | |
24 | 22, 23 | eqtr4di 2788 | . . . . 5 β’ (πΊ β (Polyβπ) β (degβ((β Γ {-1}) βf Β· πΊ)) = π) |
25 | 24 | adantl 480 | . . . 4 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (degβ((β Γ {-1}) βf Β· πΊ)) = π) |
26 | 25 | breq2d 5161 | . . 3 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (π β€ (degβ((β Γ {-1}) βf Β· πΊ)) β π β€ π)) |
27 | 26, 25 | ifbieq1d 4553 | . 2 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β if(π β€ (degβ((β Γ {-1}) βf Β· πΊ)), (degβ((β Γ {-1}) βf Β· πΊ)), π) = if(π β€ π, π, π)) |
28 | 13, 19, 27 | 3brtr3d 5180 | 1 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (degβ(πΉ βf β πΊ)) β€ if(π β€ π, π, π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 Vcvv 3472 β wss 3949 ifcif 4529 {csn 4629 class class class wbr 5149 Γ cxp 5675 βΆwf 6540 βcfv 6544 (class class class)co 7413 βf cof 7672 βcc 11112 0cc0 11114 1c1 11115 + caddc 11117 Β· cmul 11119 β€ cle 11255 β cmin 11450 -cneg 11451 Polycply 25932 degcdgr 25935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-n0 12479 df-z 12565 df-uz 12829 df-rp 12981 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-rlim 15439 df-sum 15639 df-0p 25421 df-ply 25936 df-coe 25938 df-dgr 25939 |
This theorem is referenced by: dgrcolem2 26022 plydivlem4 26043 plydiveu 26045 dgrsub2 42181 |
Copyright terms: Public domain | W3C validator |