Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dgrsub | Structured version Visualization version GIF version |
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
dgrsub.1 | ⊢ 𝑀 = (deg‘𝐹) |
dgrsub.2 | ⊢ 𝑁 = (deg‘𝐺) |
Ref | Expression |
---|---|
dgrsub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25266 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3913 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | ssid 3939 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
4 | neg1cn 12017 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | plyconst 25272 | . . . . 5 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
6 | 3, 4, 5 | mp2an 688 | . . . 4 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
7 | 1 | sseli 3913 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
8 | plymulcl 25287 | . . . 4 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
9 | 6, 7, 8 | sylancr 586 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
10 | dgrsub.1 | . . . 4 ⊢ 𝑀 = (deg‘𝐹) | |
11 | eqid 2738 | . . . 4 ⊢ (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘((ℂ × {-1}) ∘f · 𝐺)) | |
12 | 10, 11 | dgradd 25333 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
13 | 2, 9, 12 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀)) |
14 | cnex 10883 | . . . 4 ⊢ ℂ ∈ V | |
15 | plyf 25264 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
16 | plyf 25264 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
17 | ofnegsub 11901 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
18 | 14, 15, 16, 17 | mp3an3an 1465 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
19 | 18 | fveq2d 6760 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (deg‘(𝐹 ∘f − 𝐺))) |
20 | neg1ne0 12019 | . . . . . . 7 ⊢ -1 ≠ 0 | |
21 | dgrmulc 25337 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) | |
22 | 4, 20, 21 | mp3an12 1449 | . . . . . 6 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = (deg‘𝐺)) |
23 | dgrsub.2 | . . . . . 6 ⊢ 𝑁 = (deg‘𝐺) | |
24 | 22, 23 | eqtr4di 2797 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
25 | 24 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘f · 𝐺)) = 𝑁) |
26 | 25 | breq2d 5082 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)) ↔ 𝑀 ≤ 𝑁)) |
27 | 26, 25 | ifbieq1d 4480 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘f · 𝐺)), (deg‘((ℂ × {-1}) ∘f · 𝐺)), 𝑀) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
28 | 13, 19, 27 | 3brtr3d 5101 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 − cmin 11135 -cneg 11136 Polycply 25250 degcdgr 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-0p 24739 df-ply 25254 df-coe 25256 df-dgr 25257 |
This theorem is referenced by: dgrcolem2 25340 plydivlem4 25361 plydiveu 25363 dgrsub2 40876 |
Copyright terms: Public domain | W3C validator |