![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrsub | Structured version Visualization version GIF version |
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
dgrsub.1 | ⊢ 𝑀 = (deg‘𝐹) |
dgrsub.2 | ⊢ 𝑁 = (deg‘𝐺) |
Ref | Expression |
---|---|
dgrsub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘𝑓 − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 24362 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3823 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | ssid 3848 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
4 | neg1cn 11479 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | plyconst 24368 | . . . . 5 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
6 | 3, 4, 5 | mp2an 683 | . . . 4 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
7 | 1 | sseli 3823 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
8 | plymulcl 24383 | . . . 4 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) | |
9 | 6, 7, 8 | sylancr 581 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) |
10 | dgrsub.1 | . . . 4 ⊢ 𝑀 = (deg‘𝐹) | |
11 | eqid 2825 | . . . 4 ⊢ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) | |
12 | 10, 11 | dgradd 24429 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀)) |
13 | 2, 9, 12 | syl2an 589 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀)) |
14 | plyf 24360 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
15 | plyf 24360 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
16 | cnex 10340 | . . . . 5 ⊢ ℂ ∈ V | |
17 | ofnegsub 11355 | . . . . 5 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | |
18 | 16, 17 | mp3an1 1576 | . . . 4 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
19 | 14, 15, 18 | syl2an 589 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
20 | 19 | fveq2d 6441 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (deg‘(𝐹 ∘𝑓 − 𝐺))) |
21 | neg1ne0 11481 | . . . . . . 7 ⊢ -1 ≠ 0 | |
22 | dgrmulc 24433 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺)) | |
23 | 4, 21, 22 | mp3an12 1579 | . . . . . 6 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺)) |
24 | dgrsub.2 | . . . . . 6 ⊢ 𝑁 = (deg‘𝐺) | |
25 | 23, 24 | syl6eqr 2879 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁) |
26 | 25 | adantl 475 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁) |
27 | 26 | breq2d 4887 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) ↔ 𝑀 ≤ 𝑁)) |
28 | 27, 26 | ifbieq1d 4331 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
29 | 13, 20, 28 | 3brtr3d 4906 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘𝑓 − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 ⊆ wss 3798 ifcif 4308 {csn 4399 class class class wbr 4875 × cxp 5344 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ∘𝑓 cof 7160 ℂcc 10257 0cc0 10259 1c1 10260 + caddc 10262 · cmul 10264 ≤ cle 10399 − cmin 10592 -cneg 10593 Polycply 24346 degcdgr 24349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-sum 14801 df-0p 23843 df-ply 24350 df-coe 24352 df-dgr 24353 |
This theorem is referenced by: dgrcolem2 24436 plydivlem4 24457 plydiveu 24459 dgrsub2 38543 |
Copyright terms: Public domain | W3C validator |