MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnn0ind Structured version   Visualization version   GIF version

Theorem fnn0ind 12643
Description: Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1 (𝑥 = 0 → (𝜑𝜓))
fnn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fnn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fnn0ind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fnn0ind.5 (𝑁 ∈ ℕ0𝜓)
fnn0ind.6 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fnn0ind ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 12553 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
2 nn0z 12565 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 0z 12551 . . . . . . . 8 0 ∈ ℤ
4 fnn0ind.1 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
5 fnn0ind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
6 fnn0ind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
7 fnn0ind.4 . . . . . . . . 9 (𝑥 = 𝐾 → (𝜑𝜏))
8 elnn0z 12553 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
9 fnn0ind.5 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝜓)
108, 9sylbir 234 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
11103adant1 1130 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
12 0re 11198 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
13 zre 12544 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
14 zre 12544 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
15 lelttr 11286 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 < 𝑁))
16 ltle 11284 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
17163adant2 1131 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
1815, 17syld 47 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
1912, 13, 14, 18mp3an3an 1467 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2019ex 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑁 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁)))
2120com23 86 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁)))
22213impib 1116 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁))
2322impcom 408 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → 0 ≤ 𝑁)
24 elnn0z 12553 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
2524anbi1i 624 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁))
26 fnn0ind.6 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
27263expb 1120 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑦 < 𝑁)) → (𝜒𝜃))
288, 25, 27syl2anbr 599 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ∧ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁)) → (𝜒𝜃))
2928expcom 414 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
30293impa 1110 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
3130expd 416 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → (0 ≤ 𝑁 → (𝜒𝜃))))
3231impcom 408 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (0 ≤ 𝑁 → (𝜒𝜃)))
3323, 32mpd 15 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3433adantll 712 . . . . . . . . 9 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
354, 5, 6, 7, 11, 34fzind 12642 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
363, 35mpanl1 698 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
3736expcom 414 . . . . . 6 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℤ → 𝜏))
382, 37syl5 34 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
39383expa 1118 . . . 4 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
401, 39sylanb 581 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
4140impcom 408 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐾𝑁)) → 𝜏)
42413impb 1115 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5141  (class class class)co 7393  cr 11091  0cc0 11092  1c1 11093   + caddc 11095   < clt 11230  cle 11231  0cn0 12454  cz 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-z 12541
This theorem is referenced by:  nn0seqcvgd  16489  poimirlem28  36318
  Copyright terms: Public domain W3C validator