![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sincosq1eq | Structured version Visualization version GIF version |
Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
Ref | Expression |
---|---|
sincosq1eq | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | picn 25938 | . . . . . 6 ⊢ π ∈ ℂ | |
2 | 2cn 12274 | . . . . . 6 ⊢ 2 ∈ ℂ | |
3 | 2ne0 12303 | . . . . . 6 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | divcli 11943 | . . . . 5 ⊢ (π / 2) ∈ ℂ |
5 | mulcl 11181 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐴 · (π / 2)) ∈ ℂ) | |
6 | 4, 5 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (π / 2)) ∈ ℂ) |
7 | coshalfpim 25974 | . . . 4 ⊢ ((𝐴 · (π / 2)) ∈ ℂ → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) |
9 | 8 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (sin‘(𝐴 · (π / 2)))) |
10 | adddir 11192 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (π / 2) ∈ ℂ) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) | |
11 | 4, 10 | mp3an3 1451 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) |
12 | 11 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 + 𝐵) · (π / 2)) = ((𝐴 · (π / 2)) + (𝐵 · (π / 2)))) |
13 | oveq1 7403 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) = 1 → ((𝐴 + 𝐵) · (π / 2)) = (1 · (π / 2))) | |
14 | 4 | mullidi 11206 | . . . . . . 7 ⊢ (1 · (π / 2)) = (π / 2) |
15 | 13, 14 | eqtrdi 2789 | . . . . . 6 ⊢ ((𝐴 + 𝐵) = 1 → ((𝐴 + 𝐵) · (π / 2)) = (π / 2)) |
16 | 15 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 + 𝐵) · (π / 2)) = (π / 2)) |
17 | 12, 16 | eqtr3d 2775 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2)) |
18 | mulcl 11181 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐵 · (π / 2)) ∈ ℂ) | |
19 | 4, 18 | mpan2 690 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵 · (π / 2)) ∈ ℂ) |
20 | subadd 11450 | . . . . . 6 ⊢ (((π / 2) ∈ ℂ ∧ (𝐴 · (π / 2)) ∈ ℂ ∧ (𝐵 · (π / 2)) ∈ ℂ) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) | |
21 | 4, 6, 19, 20 | mp3an3an 1468 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) |
22 | 21 | 3adant3 1133 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2)) ↔ ((𝐴 · (π / 2)) + (𝐵 · (π / 2))) = (π / 2))) |
23 | 17, 22 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → ((π / 2) − (𝐴 · (π / 2))) = (𝐵 · (π / 2))) |
24 | 23 | fveq2d 6885 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (cos‘((π / 2) − (𝐴 · (π / 2)))) = (cos‘(𝐵 · (π / 2)))) |
25 | 9, 24 | eqtr3d 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6535 (class class class)co 7396 ℂcc 11095 1c1 11098 + caddc 11100 · cmul 11102 − cmin 11431 / cdiv 11858 2c2 12254 sincsin 15994 cosccos 15995 πcpi 15997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 ax-addf 11176 ax-mulf 11177 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-of 7657 df-om 7843 df-1st 7962 df-2nd 7963 df-supp 8134 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-2o 8454 df-er 8691 df-map 8810 df-pm 8811 df-ixp 8880 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-fsupp 9350 df-fi 9393 df-sup 9424 df-inf 9425 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-dec 12665 df-uz 12810 df-q 12920 df-rp 12962 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13315 df-ioc 13316 df-ico 13317 df-icc 13318 df-fz 13472 df-fzo 13615 df-fl 13744 df-seq 13954 df-exp 14015 df-fac 14221 df-bc 14250 df-hash 14278 df-shft 15001 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-limsup 15402 df-clim 15419 df-rlim 15420 df-sum 15620 df-ef 15998 df-sin 16000 df-cos 16001 df-pi 16003 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-starv 17199 df-sca 17200 df-vsca 17201 df-ip 17202 df-tset 17203 df-ple 17204 df-ds 17206 df-unif 17207 df-hom 17208 df-cco 17209 df-rest 17355 df-topn 17356 df-0g 17374 df-gsum 17375 df-topgen 17376 df-pt 17377 df-prds 17380 df-xrs 17435 df-qtop 17440 df-imas 17441 df-xps 17443 df-mre 17517 df-mrc 17518 df-acs 17520 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-submnd 18659 df-mulg 18936 df-cntz 19166 df-cmn 19634 df-psmet 20910 df-xmet 20911 df-met 20912 df-bl 20913 df-mopn 20914 df-fbas 20915 df-fg 20916 df-cnfld 20919 df-top 22365 df-topon 22382 df-topsp 22404 df-bases 22418 df-cld 22492 df-ntr 22493 df-cls 22494 df-nei 22571 df-lp 22609 df-perf 22610 df-cn 22700 df-cnp 22701 df-haus 22788 df-tx 23035 df-hmeo 23228 df-fil 23319 df-fm 23411 df-flim 23412 df-flf 23413 df-xms 23795 df-ms 23796 df-tms 23797 df-cncf 24363 df-limc 25352 df-dv 25353 |
This theorem is referenced by: sincos4thpi 25992 sincos6thpi 25994 |
Copyright terms: Public domain | W3C validator |