MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Structured version   Visualization version   GIF version

Theorem divalglem0 16304
Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
Assertion
Ref Expression
divalglem0 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 iddvds 16180 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷𝐷)
3 dvdsabsb 16186 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
43anidms 566 . . . . . . 7 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
52, 4mpbid 232 . . . . . 6 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
61, 5ax-mp 5 . . . . 5 𝐷 ∥ (abs‘𝐷)
7 nn0abscl 15219 . . . . . . . 8 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
81, 7ax-mp 5 . . . . . . 7 (abs‘𝐷) ∈ ℕ0
98nn0zi 12500 . . . . . 6 (abs‘𝐷) ∈ ℤ
10 dvdsmultr2 16209 . . . . . 6 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
111, 9, 10mp3an13 1454 . . . . 5 (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
126, 11mpi 20 . . . 4 (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
1312adantl 481 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
14 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
15 zsubcl 12517 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁𝑅) ∈ ℤ)
1614, 15mpan 690 . . . 4 (𝑅 ∈ ℤ → (𝑁𝑅) ∈ ℤ)
17 zmulcl 12524 . . . . 5 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
189, 17mpan2 691 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
19 dvds2add 16201 . . . 4 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
201, 16, 18, 19mp3an3an 1469 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2113, 20mpan2d 694 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
22 zcn 12476 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2314, 22ax-mp 5 . . . 4 𝑁 ∈ ℂ
24 zcn 12476 . . . 4 (𝑅 ∈ ℤ → 𝑅 ∈ ℂ)
2518zcnd 12581 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
26 subsub 11394 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2723, 24, 25, 26mp3an3an 1469 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2827breq2d 5104 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2921, 28sylibrd 259 1 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007   + caddc 11012   · cmul 11014  cmin 11347  0cn0 12384  cz 12471  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  divalglem5  16308
  Copyright terms: Public domain W3C validator