MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Structured version   Visualization version   GIF version

Theorem divalglem0 16178
Description: Lemma for divalg 16188. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
Assertion
Ref Expression
divalglem0 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6 𝐷 ∈ ℤ
2 iddvds 16055 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷𝐷)
3 dvdsabsb 16061 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
43anidms 567 . . . . . . 7 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
52, 4mpbid 231 . . . . . 6 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
61, 5ax-mp 5 . . . . 5 𝐷 ∥ (abs‘𝐷)
7 nn0abscl 15100 . . . . . . . 8 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
81, 7ax-mp 5 . . . . . . 7 (abs‘𝐷) ∈ ℕ0
98nn0zi 12424 . . . . . 6 (abs‘𝐷) ∈ ℤ
10 dvdsmultr2 16083 . . . . . 6 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
111, 9, 10mp3an13 1451 . . . . 5 (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷))))
126, 11mpi 20 . . . 4 (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
1312adantl 482 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))
14 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
15 zsubcl 12441 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁𝑅) ∈ ℤ)
1614, 15mpan 687 . . . 4 (𝑅 ∈ ℤ → (𝑁𝑅) ∈ ℤ)
17 zmulcl 12448 . . . . 5 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
189, 17mpan2 688 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
19 dvds2add 16075 . . . 4 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
201, 16, 18, 19mp3an3an 1466 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2113, 20mpan2d 691 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
22 zcn 12403 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2314, 22ax-mp 5 . . . 4 𝑁 ∈ ℂ
24 zcn 12403 . . . 4 (𝑅 ∈ ℤ → 𝑅 ∈ ℂ)
2518zcnd 12506 . . . 4 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
26 subsub 11330 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2723, 24, 25, 26mp3an3an 1466 . . 3 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁𝑅) + (𝐾 · (abs‘𝐷))))
2827breq2d 5098 . 2 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁𝑅) + (𝐾 · (abs‘𝐷)))))
2921, 28sylibrd 258 1 ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5086  cfv 6465  (class class class)co 7316  cc 10948   + caddc 10953   · cmul 10955  cmin 11284  0cn0 12312  cz 12398  abscabs 15021  cdvds 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-sup 9277  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-seq 13801  df-exp 13862  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-dvds 16040
This theorem is referenced by:  divalglem5  16182
  Copyright terms: Public domain W3C validator