![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalglem0 | Structured version Visualization version GIF version |
Description: Lemma for divalg 15533. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
Ref | Expression |
---|---|
divalglem0 | ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
2 | iddvds 15402 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
3 | dvdsabsb 15408 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) | |
4 | 3 | anidms 562 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
5 | 2, 4 | mpbid 224 | . . . . . 6 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷)) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∥ (abs‘𝐷) |
7 | nn0abscl 14459 | . . . . . . . 8 ⊢ (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0) | |
8 | 1, 7 | ax-mp 5 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ0 |
9 | 8 | nn0zi 11754 | . . . . . 6 ⊢ (abs‘𝐷) ∈ ℤ |
10 | dvdsmultr2 15428 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) | |
11 | 1, 9, 10 | mp3an13 1525 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) |
12 | 6, 11 | mpi 20 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
13 | 12 | adantl 475 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
14 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
15 | zsubcl 11771 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 − 𝑅) ∈ ℤ) | |
16 | 14, 15 | mpan 680 | . . . 4 ⊢ (𝑅 ∈ ℤ → (𝑁 − 𝑅) ∈ ℤ) |
17 | zmulcl 11778 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ) | |
18 | 9, 17 | mpan2 681 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ) |
19 | dvds2add 15422 | . . . 4 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) | |
20 | 1, 16, 18, 19 | mp3an3an 1540 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
21 | 13, 20 | mpan2d 684 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
22 | zcn 11733 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 14, 22 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℂ |
24 | zcn 11733 | . . . 4 ⊢ (𝑅 ∈ ℤ → 𝑅 ∈ ℂ) | |
25 | 18 | zcnd 11835 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ) |
26 | subsub 10653 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) | |
27 | 23, 24, 25, 26 | mp3an3an 1540 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) |
28 | 27 | breq2d 4898 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
29 | 21, 28 | sylibrd 251 | 1 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 + caddc 10275 · cmul 10277 − cmin 10606 ℕ0cn0 11642 ℤcz 11728 abscabs 14381 ∥ cdvds 15387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 |
This theorem is referenced by: divalglem5 15527 |
Copyright terms: Public domain | W3C validator |