Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divalglem0 | Structured version Visualization version GIF version |
Description: Lemma for divalg 15964. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
Ref | Expression |
---|---|
divalglem0 | ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
2 | iddvds 15831 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
3 | dvdsabsb 15837 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) | |
4 | 3 | anidms 570 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
5 | 2, 4 | mpbid 235 | . . . . . 6 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷)) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∥ (abs‘𝐷) |
7 | nn0abscl 14876 | . . . . . . . 8 ⊢ (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0) | |
8 | 1, 7 | ax-mp 5 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ0 |
9 | 8 | nn0zi 12202 | . . . . . 6 ⊢ (abs‘𝐷) ∈ ℤ |
10 | dvdsmultr2 15859 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) | |
11 | 1, 9, 10 | mp3an13 1454 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) |
12 | 6, 11 | mpi 20 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
13 | 12 | adantl 485 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
14 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
15 | zsubcl 12219 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 − 𝑅) ∈ ℤ) | |
16 | 14, 15 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ ℤ → (𝑁 − 𝑅) ∈ ℤ) |
17 | zmulcl 12226 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ) | |
18 | 9, 17 | mpan2 691 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ) |
19 | dvds2add 15851 | . . . 4 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) | |
20 | 1, 16, 18, 19 | mp3an3an 1469 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
21 | 13, 20 | mpan2d 694 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
22 | zcn 12181 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 14, 22 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℂ |
24 | zcn 12181 | . . . 4 ⊢ (𝑅 ∈ ℤ → 𝑅 ∈ ℂ) | |
25 | 18 | zcnd 12283 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ) |
26 | subsub 11108 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) | |
27 | 23, 24, 25, 26 | mp3an3an 1469 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) |
28 | 27 | breq2d 5065 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
29 | 21, 28 | sylibrd 262 | 1 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 · cmul 10734 − cmin 11062 ℕ0cn0 12090 ℤcz 12176 abscabs 14797 ∥ cdvds 15815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-dvds 15816 |
This theorem is referenced by: divalglem5 15958 |
Copyright terms: Public domain | W3C validator |