| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem0 | Structured version Visualization version GIF version | ||
| Description: Lemma for divalg 16407. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
| Ref | Expression |
|---|---|
| divalglem0 | ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
| 2 | iddvds 16274 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
| 3 | dvdsabsb 16280 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) | |
| 4 | 3 | anidms 566 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
| 5 | 2, 4 | mpbid 232 | . . . . . 6 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷)) |
| 6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∥ (abs‘𝐷) |
| 7 | nn0abscl 15318 | . . . . . . . 8 ⊢ (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0) | |
| 8 | 1, 7 | ax-mp 5 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ0 |
| 9 | 8 | nn0zi 12609 | . . . . . 6 ⊢ (abs‘𝐷) ∈ ℤ |
| 10 | dvdsmultr2 16302 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) | |
| 11 | 1, 9, 10 | mp3an13 1453 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) |
| 12 | 6, 11 | mpi 20 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
| 14 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
| 15 | zsubcl 12626 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 − 𝑅) ∈ ℤ) | |
| 16 | 14, 15 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ ℤ → (𝑁 − 𝑅) ∈ ℤ) |
| 17 | zmulcl 12633 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ) | |
| 18 | 9, 17 | mpan2 691 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ) |
| 19 | dvds2add 16294 | . . . 4 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) | |
| 20 | 1, 16, 18, 19 | mp3an3an 1468 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
| 21 | 13, 20 | mpan2d 694 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
| 22 | zcn 12585 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 23 | 14, 22 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 24 | zcn 12585 | . . . 4 ⊢ (𝑅 ∈ ℤ → 𝑅 ∈ ℂ) | |
| 25 | 18 | zcnd 12690 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ) |
| 26 | subsub 11505 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) | |
| 27 | 23, 24, 25, 26 | mp3an3an 1468 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) |
| 28 | 27 | breq2d 5128 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
| 29 | 21, 28 | sylibrd 259 | 1 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 + caddc 11124 · cmul 11126 − cmin 11458 ℕ0cn0 12493 ℤcz 12580 abscabs 15240 ∥ cdvds 16257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-seq 14009 df-exp 14069 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-dvds 16258 |
| This theorem is referenced by: divalglem5 16401 |
| Copyright terms: Public domain | W3C validator |