MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Visualization version   GIF version

Theorem cxploglim 26908
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxploglim
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 12891 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 reefcl 15986 . . . 4 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ+ → (exp‘𝐴) ∈ ℝ)
4 efgt1 16017 . . 3 (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴))
5 cxp2limlem 26906 . . 3 (((exp‘𝐴) ∈ ℝ ∧ 1 < (exp‘𝐴)) → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
63, 4, 5syl2anc 584 . 2 (𝐴 ∈ ℝ+ → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
7 reefcl 15986 . . . . . . . 8 (𝑧 ∈ ℝ → (exp‘𝑧) ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (exp‘𝑧) ∈ ℝ)
9 1re 11104 . . . . . . 7 1 ∈ ℝ
10 ifcl 4519 . . . . . . 7 (((exp‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
12 rpre 12891 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
13 maxlt 13084 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (exp‘𝑧) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
149, 8, 12, 13mp3an3an 1469 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
15 simprrr 781 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < 𝑛)
16 reeflog 26509 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (exp‘(log‘𝑛)) = 𝑛)
1716ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘(log‘𝑛)) = 𝑛)
1815, 17breqtrrd 5117 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < (exp‘(log‘𝑛)))
19 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 ∈ ℝ)
2012ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℝ)
21 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 1 < 𝑛)
2220, 21rplogcld 26558 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ+)
2322rpred 12926 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ)
24 eflt 16018 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (log‘𝑛) ∈ ℝ) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2519, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2618, 25mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 < (log‘𝑛))
27 breq2 5093 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → (𝑧 < 𝑚𝑧 < (log‘𝑛)))
28 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → 𝑚 = (log‘𝑛))
29 oveq2 7349 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → ((exp‘𝐴)↑𝑐𝑚) = ((exp‘𝐴)↑𝑐(log‘𝑛)))
3028, 29oveq12d 7359 . . . . . . . . . . . . . . . . 17 (𝑚 = (log‘𝑛) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) = ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))))
3130fveq2d 6821 . . . . . . . . . . . . . . . 16 (𝑚 = (log‘𝑛) → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) = (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))))
3231breq1d 5099 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → ((abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥 ↔ (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
3327, 32imbi12d 344 . . . . . . . . . . . . . 14 (𝑚 = (log‘𝑛) → ((𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) ↔ (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3433rspcv 3571 . . . . . . . . . . . . 13 ((log‘𝑛) ∈ ℝ+ → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3522, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3626, 35mpid 44 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
371ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℝ)
3837relogefd 26557 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘(exp‘𝐴)) = 𝐴)
3938oveq2d 7357 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = ((log‘𝑛) · 𝐴))
4022rpcnd 12928 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℂ)
41 rpcn 12893 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℂ)
4340, 42mulcomd 11125 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · 𝐴) = (𝐴 · (log‘𝑛)))
4439, 43eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = (𝐴 · (log‘𝑛)))
4544fveq2d 6821 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))) = (exp‘(𝐴 · (log‘𝑛))))
463ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℝ)
4746recnd 11132 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℂ)
48 efne0 15997 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
4942, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ≠ 0)
5047, 49, 40cxpefd 26641 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))))
51 rpcn 12893 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
5251ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℂ)
53 rpne0 12899 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ≠ 0)
5453ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ≠ 0)
5552, 54, 42cxpefd 26641 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑛𝑐𝐴) = (exp‘(𝐴 · (log‘𝑛))))
5645, 50, 553eqtr4d 2775 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (𝑛𝑐𝐴))
5756oveq2d 7357 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))) = ((log‘𝑛) / (𝑛𝑐𝐴)))
5857fveq2d 6821 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) = (abs‘((log‘𝑛) / (𝑛𝑐𝐴))))
5958breq1d 5099 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥 ↔ (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6036, 59sylibd 239 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6160expr 456 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → ((1 < 𝑛 ∧ (exp‘𝑧) < 𝑛) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6214, 61sylbid 240 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6362com23 86 . . . . . . 7 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6463ralrimdva 3130 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
65 breq1 5092 . . . . . . 7 (𝑦 = if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) → (𝑦 < 𝑛 ↔ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛))
6665rspceaimv 3581 . . . . . 6 ((if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6711, 64, 66syl6an 684 . . . . 5 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6867rexlimdva 3131 . . . 4 (𝐴 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6968ralimdv 3144 . . 3 (𝐴 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
70 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
711adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝐴 ∈ ℝ)
7271rpefcld 16006 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (exp‘𝐴) ∈ ℝ+)
73 rpre 12891 . . . . . . . . 9 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
7473adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
7572, 74rpcxpcld 26662 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → ((exp‘𝐴)↑𝑐𝑚) ∈ ℝ+)
7670, 75rpdivcld 12943 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℝ+)
7776rpcnd 12928 . . . . 5 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
7877ralrimiva 3122 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑚 ∈ ℝ+ (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
79 rpssre 12890 . . . . 5 + ⊆ ℝ
8079a1i 11 . . . 4 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
8178, 80rlim0lt 15408 . . 3 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥)))
82 relogcl 26504 . . . . . . . 8 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
8382adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
84 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
851adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
8684, 85rpcxpcld 26662 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
8783, 86rerpdivcld 12957 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℝ)
8887recnd 11132 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
8988ralrimiva 3122 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
9089, 80rlim0lt 15408 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
9169, 81, 903imtr4d 294 . 2 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0))
926, 91mpd 15 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  wss 3900  ifcif 4473   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003   < clt 11138  cle 11139   / cdiv 11766  +crp 12882  abscabs 15133  𝑟 crli 15384  expce 15960  logclog 26483  𝑐ccxp 26484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486
This theorem is referenced by:  cxploglim2  26909  logfacrlim  27155  chtppilimlem2  27405  chpchtlim  27410  dchrvmasumlema  27431  logdivsum  27464
  Copyright terms: Public domain W3C validator