MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Visualization version   GIF version

Theorem cxploglim 26940
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxploglim
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 13017 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 reefcl 16103 . . . 4 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ+ → (exp‘𝐴) ∈ ℝ)
4 efgt1 16134 . . 3 (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴))
5 cxp2limlem 26938 . . 3 (((exp‘𝐴) ∈ ℝ ∧ 1 < (exp‘𝐴)) → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
63, 4, 5syl2anc 584 . 2 (𝐴 ∈ ℝ+ → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
7 reefcl 16103 . . . . . . . 8 (𝑧 ∈ ℝ → (exp‘𝑧) ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (exp‘𝑧) ∈ ℝ)
9 1re 11235 . . . . . . 7 1 ∈ ℝ
10 ifcl 4546 . . . . . . 7 (((exp‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
12 rpre 13017 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
13 maxlt 13209 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (exp‘𝑧) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
149, 8, 12, 13mp3an3an 1469 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
15 simprrr 781 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < 𝑛)
16 reeflog 26541 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (exp‘(log‘𝑛)) = 𝑛)
1716ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘(log‘𝑛)) = 𝑛)
1815, 17breqtrrd 5147 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < (exp‘(log‘𝑛)))
19 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 ∈ ℝ)
2012ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℝ)
21 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 1 < 𝑛)
2220, 21rplogcld 26590 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ+)
2322rpred 13051 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ)
24 eflt 16135 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (log‘𝑛) ∈ ℝ) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2519, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2618, 25mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 < (log‘𝑛))
27 breq2 5123 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → (𝑧 < 𝑚𝑧 < (log‘𝑛)))
28 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → 𝑚 = (log‘𝑛))
29 oveq2 7413 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → ((exp‘𝐴)↑𝑐𝑚) = ((exp‘𝐴)↑𝑐(log‘𝑛)))
3028, 29oveq12d 7423 . . . . . . . . . . . . . . . . 17 (𝑚 = (log‘𝑛) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) = ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))))
3130fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝑚 = (log‘𝑛) → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) = (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))))
3231breq1d 5129 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → ((abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥 ↔ (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
3327, 32imbi12d 344 . . . . . . . . . . . . . 14 (𝑚 = (log‘𝑛) → ((𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) ↔ (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3433rspcv 3597 . . . . . . . . . . . . 13 ((log‘𝑛) ∈ ℝ+ → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3522, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3626, 35mpid 44 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
371ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℝ)
3837relogefd 26589 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘(exp‘𝐴)) = 𝐴)
3938oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = ((log‘𝑛) · 𝐴))
4022rpcnd 13053 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℂ)
41 rpcn 13019 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℂ)
4340, 42mulcomd 11256 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · 𝐴) = (𝐴 · (log‘𝑛)))
4439, 43eqtrd 2770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = (𝐴 · (log‘𝑛)))
4544fveq2d 6880 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))) = (exp‘(𝐴 · (log‘𝑛))))
463ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℝ)
4746recnd 11263 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℂ)
48 efne0 16114 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
4942, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ≠ 0)
5047, 49, 40cxpefd 26673 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))))
51 rpcn 13019 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
5251ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℂ)
53 rpne0 13025 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ≠ 0)
5453ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ≠ 0)
5552, 54, 42cxpefd 26673 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑛𝑐𝐴) = (exp‘(𝐴 · (log‘𝑛))))
5645, 50, 553eqtr4d 2780 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (𝑛𝑐𝐴))
5756oveq2d 7421 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))) = ((log‘𝑛) / (𝑛𝑐𝐴)))
5857fveq2d 6880 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) = (abs‘((log‘𝑛) / (𝑛𝑐𝐴))))
5958breq1d 5129 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥 ↔ (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6036, 59sylibd 239 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6160expr 456 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → ((1 < 𝑛 ∧ (exp‘𝑧) < 𝑛) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6214, 61sylbid 240 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6362com23 86 . . . . . . 7 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6463ralrimdva 3140 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
65 breq1 5122 . . . . . . 7 (𝑦 = if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) → (𝑦 < 𝑛 ↔ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛))
6665rspceaimv 3607 . . . . . 6 ((if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6711, 64, 66syl6an 684 . . . . 5 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6867rexlimdva 3141 . . . 4 (𝐴 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6968ralimdv 3154 . . 3 (𝐴 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
70 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
711adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝐴 ∈ ℝ)
7271rpefcld 16123 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (exp‘𝐴) ∈ ℝ+)
73 rpre 13017 . . . . . . . . 9 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
7473adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
7572, 74rpcxpcld 26694 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → ((exp‘𝐴)↑𝑐𝑚) ∈ ℝ+)
7670, 75rpdivcld 13068 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℝ+)
7776rpcnd 13053 . . . . 5 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
7877ralrimiva 3132 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑚 ∈ ℝ+ (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
79 rpssre 13016 . . . . 5 + ⊆ ℝ
8079a1i 11 . . . 4 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
8178, 80rlim0lt 15525 . . 3 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥)))
82 relogcl 26536 . . . . . . . 8 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
8382adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
84 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
851adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
8684, 85rpcxpcld 26694 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
8783, 86rerpdivcld 13082 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℝ)
8887recnd 11263 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
8988ralrimiva 3132 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
9089, 80rlim0lt 15525 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
9169, 81, 903imtr4d 294 . 2 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0))
926, 91mpd 15 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  +crp 13008  abscabs 15253  𝑟 crli 15501  expce 16077  logclog 26515  𝑐ccxp 26516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518
This theorem is referenced by:  cxploglim2  26941  logfacrlim  27187  chtppilimlem2  27437  chpchtlim  27442  dchrvmasumlema  27463  logdivsum  27496
  Copyright terms: Public domain W3C validator