Step | Hyp | Ref
| Expression |
1 | | rpre 12738 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
2 | | reefcl 15796 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(exp‘𝐴) ∈
ℝ) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ (exp‘𝐴) ∈
ℝ) |
4 | | efgt1 15825 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 1 < (exp‘𝐴)) |
5 | | cxp2limlem 26125 |
. . 3
⊢
(((exp‘𝐴)
∈ ℝ ∧ 1 < (exp‘𝐴)) → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟
0) |
6 | 3, 4, 5 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (𝑚 ∈
ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟
0) |
7 | | reefcl 15796 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
(exp‘𝑧) ∈
ℝ) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
→ (exp‘𝑧) ∈
ℝ) |
9 | | 1re 10975 |
. . . . . . 7
⊢ 1 ∈
ℝ |
10 | | ifcl 4504 |
. . . . . . 7
⊢
(((exp‘𝑧)
∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ) |
11 | 8, 9, 10 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
→ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ) |
12 | | rpre 12738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ) |
13 | | maxlt 12927 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (exp‘𝑧) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (if(1 ≤
(exp‘𝑧),
(exp‘𝑧), 1) <
𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) |
14 | 9, 8, 12, 13 | mp3an3an 1466 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ 𝑛 ∈
ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) |
15 | | simprrr 779 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < 𝑛) |
16 | | reeflog 25736 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℝ+
→ (exp‘(log‘𝑛)) = 𝑛) |
17 | 16 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘(log‘𝑛)) = 𝑛) |
18 | 15, 17 | breqtrrd 5102 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < (exp‘(log‘𝑛))) |
19 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 ∈ ℝ) |
20 | 12 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℝ) |
21 | | simprrl 778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 1 < 𝑛) |
22 | 20, 21 | rplogcld 25784 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈
ℝ+) |
23 | 22 | rpred 12772 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ) |
24 | | eflt 15826 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ ∧
(log‘𝑛) ∈
ℝ) → (𝑧 <
(log‘𝑛) ↔
(exp‘𝑧) <
(exp‘(log‘𝑛)))) |
25 | 19, 23, 24 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛)))) |
26 | 18, 25 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 < (log‘𝑛)) |
27 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (log‘𝑛) → (𝑧 < 𝑚 ↔ 𝑧 < (log‘𝑛))) |
28 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (log‘𝑛) → 𝑚 = (log‘𝑛)) |
29 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (log‘𝑛) → ((exp‘𝐴)↑𝑐𝑚) = ((exp‘𝐴)↑𝑐(log‘𝑛))) |
30 | 28, 29 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (log‘𝑛) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) = ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) |
31 | 30 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (log‘𝑛) → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) =
(abs‘((log‘𝑛) /
((exp‘𝐴)↑𝑐(log‘𝑛))))) |
32 | 31 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (log‘𝑛) → ((abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥 ↔ (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)) |
33 | 27, 32 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (log‘𝑛) → ((𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) ↔ (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))) |
34 | 33 | rspcv 3557 |
. . . . . . . . . . . . 13
⊢
((log‘𝑛)
∈ ℝ+ → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))) |
35 | 22, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))) |
36 | 26, 35 | mpid 44 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)) |
37 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℝ) |
38 | 37 | relogefd 25783 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘(exp‘𝐴)) = 𝐴) |
39 | 38 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = ((log‘𝑛) · 𝐴)) |
40 | 22 | rpcnd 12774 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℂ) |
41 | | rpcn 12740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℂ) |
42 | 41 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℂ) |
43 | 40, 42 | mulcomd 10996 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · 𝐴) = (𝐴 · (log‘𝑛))) |
44 | 39, 43 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = (𝐴 · (log‘𝑛))) |
45 | 44 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘((log‘𝑛) ·
(log‘(exp‘𝐴))))
= (exp‘(𝐴 ·
(log‘𝑛)))) |
46 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℝ) |
47 | 46 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℂ) |
48 | | efne0 15806 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ≠
0) |
49 | 42, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ≠ 0) |
50 | 47, 49, 40 | cxpefd 25867 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) =
(exp‘((log‘𝑛)
· (log‘(exp‘𝐴))))) |
51 | | rpcn 12740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℂ) |
52 | 51 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℂ) |
53 | | rpne0 12746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ≠
0) |
54 | 53 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ≠ 0) |
55 | 52, 54, 42 | cxpefd 25867 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑛↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑛)))) |
56 | 45, 50, 55 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (𝑛↑𝑐𝐴)) |
57 | 56 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))) = ((log‘𝑛) / (𝑛↑𝑐𝐴))) |
58 | 57 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) =
(abs‘((log‘𝑛) /
(𝑛↑𝑐𝐴)))) |
59 | 58 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥 ↔ (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥)) |
60 | 36, 59 | sylibd 238 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ (𝑛 ∈
ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥)) |
61 | 60 | expr 457 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ 𝑛 ∈
ℝ+) → ((1 < 𝑛 ∧ (exp‘𝑧) < 𝑛) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
62 | 14, 61 | sylbid 239 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ 𝑛 ∈
ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
63 | 62 | com23 86 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
∧ 𝑛 ∈
ℝ+) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
64 | 63 | ralrimdva 3106 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
→ (∀𝑚 ∈
ℝ+ (𝑧 <
𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑛 ∈ ℝ+ (if(1 ≤
(exp‘𝑧),
(exp‘𝑧), 1) <
𝑛 →
(abs‘((log‘𝑛) /
(𝑛↑𝑐𝐴))) < 𝑥))) |
65 | | breq1 5077 |
. . . . . . 7
⊢ (𝑦 = if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) → (𝑦 < 𝑛 ↔ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛)) |
66 | 65 | rspceaimv 3565 |
. . . . . 6
⊢ ((if(1
≤ (exp‘𝑧),
(exp‘𝑧), 1) ∈
ℝ ∧ ∀𝑛
∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥)) |
67 | 11, 64, 66 | syl6an 681 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑧 ∈ ℝ)
→ (∀𝑚 ∈
ℝ+ (𝑧 <
𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
68 | 67 | rexlimdva 3213 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ (∃𝑧 ∈
ℝ ∀𝑚 ∈
ℝ+ (𝑧 <
𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
69 | 68 | ralimdv 3109 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+
(𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
70 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → 𝑚 ∈ ℝ+) |
71 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → 𝐴 ∈ ℝ) |
72 | 71 | rpefcld 15814 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (exp‘𝐴) ∈
ℝ+) |
73 | | rpre 12738 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℝ+
→ 𝑚 ∈
ℝ) |
74 | 73 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → 𝑚 ∈ ℝ) |
75 | 72, 74 | rpcxpcld 25887 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → ((exp‘𝐴)↑𝑐𝑚) ∈
ℝ+) |
76 | 70, 75 | rpdivcld 12789 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈
ℝ+) |
77 | 76 | rpcnd 12774 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈
ℂ) |
78 | 77 | ralrimiva 3103 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ ∀𝑚 ∈
ℝ+ (𝑚 /
((exp‘𝐴)↑𝑐𝑚)) ∈
ℂ) |
79 | | rpssre 12737 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
80 | 79 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ ℝ+ ⊆ ℝ) |
81 | 78, 80 | rlim0lt 15218 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ ((𝑚 ∈
ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟
0 ↔ ∀𝑥 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥))) |
82 | | relogcl 25731 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ+
→ (log‘𝑛) ∈
ℝ) |
83 | 82 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (log‘𝑛) ∈ ℝ) |
84 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → 𝑛 ∈ ℝ+) |
85 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → 𝐴 ∈ ℝ) |
86 | 84, 85 | rpcxpcld 25887 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑛↑𝑐𝐴) ∈
ℝ+) |
87 | 83, 86 | rerpdivcld 12803 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → ((log‘𝑛) / (𝑛↑𝑐𝐴)) ∈ ℝ) |
88 | 87 | recnd 11003 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → ((log‘𝑛) / (𝑛↑𝑐𝐴)) ∈ ℂ) |
89 | 88 | ralrimiva 3103 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ ∀𝑛 ∈
ℝ+ ((log‘𝑛) / (𝑛↑𝑐𝐴)) ∈ ℂ) |
90 | 89, 80 | rlim0lt 15218 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟 0 ↔
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛↑𝑐𝐴))) < 𝑥))) |
91 | 69, 81, 90 | 3imtr4d 294 |
. 2
⊢ (𝐴 ∈ ℝ+
→ ((𝑚 ∈
ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟
0 → (𝑛 ∈
ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟
0)) |
92 | 6, 91 | mpd 15 |
1
⊢ (𝐴 ∈ ℝ+
→ (𝑛 ∈
ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟
0) |