MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Visualization version   GIF version

Theorem cxploglim 27001
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxploglim
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 13028 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 reefcl 16082 . . . 4 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ+ → (exp‘𝐴) ∈ ℝ)
4 efgt1 16111 . . 3 (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴))
5 cxp2limlem 26999 . . 3 (((exp‘𝐴) ∈ ℝ ∧ 1 < (exp‘𝐴)) → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
63, 4, 5syl2anc 582 . 2 (𝐴 ∈ ℝ+ → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
7 reefcl 16082 . . . . . . . 8 (𝑧 ∈ ℝ → (exp‘𝑧) ∈ ℝ)
87adantl 480 . . . . . . 7 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (exp‘𝑧) ∈ ℝ)
9 1re 11253 . . . . . . 7 1 ∈ ℝ
10 ifcl 4569 . . . . . . 7 (((exp‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
118, 9, 10sylancl 584 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
12 rpre 13028 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
13 maxlt 13218 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (exp‘𝑧) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
149, 8, 12, 13mp3an3an 1464 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
15 simprrr 780 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < 𝑛)
16 reeflog 26602 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (exp‘(log‘𝑛)) = 𝑛)
1716ad2antrl 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘(log‘𝑛)) = 𝑛)
1815, 17breqtrrd 5172 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < (exp‘(log‘𝑛)))
19 simplr 767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 ∈ ℝ)
2012ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℝ)
21 simprrl 779 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 1 < 𝑛)
2220, 21rplogcld 26651 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ+)
2322rpred 13062 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ)
24 eflt 16112 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (log‘𝑛) ∈ ℝ) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2519, 23, 24syl2anc 582 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2618, 25mpbird 256 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 < (log‘𝑛))
27 breq2 5148 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → (𝑧 < 𝑚𝑧 < (log‘𝑛)))
28 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → 𝑚 = (log‘𝑛))
29 oveq2 7422 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → ((exp‘𝐴)↑𝑐𝑚) = ((exp‘𝐴)↑𝑐(log‘𝑛)))
3028, 29oveq12d 7432 . . . . . . . . . . . . . . . . 17 (𝑚 = (log‘𝑛) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) = ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))))
3130fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑚 = (log‘𝑛) → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) = (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))))
3231breq1d 5154 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → ((abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥 ↔ (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
3327, 32imbi12d 343 . . . . . . . . . . . . . 14 (𝑚 = (log‘𝑛) → ((𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) ↔ (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3433rspcv 3604 . . . . . . . . . . . . 13 ((log‘𝑛) ∈ ℝ+ → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3522, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3626, 35mpid 44 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
371ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℝ)
3837relogefd 26650 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘(exp‘𝐴)) = 𝐴)
3938oveq2d 7430 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = ((log‘𝑛) · 𝐴))
4022rpcnd 13064 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℂ)
41 rpcn 13030 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4241ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℂ)
4340, 42mulcomd 11274 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · 𝐴) = (𝐴 · (log‘𝑛)))
4439, 43eqtrd 2766 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = (𝐴 · (log‘𝑛)))
4544fveq2d 6895 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))) = (exp‘(𝐴 · (log‘𝑛))))
463ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℝ)
4746recnd 11281 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℂ)
48 efne0 16092 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
4942, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ≠ 0)
5047, 49, 40cxpefd 26734 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))))
51 rpcn 13030 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
5251ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℂ)
53 rpne0 13036 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ≠ 0)
5453ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ≠ 0)
5552, 54, 42cxpefd 26734 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑛𝑐𝐴) = (exp‘(𝐴 · (log‘𝑛))))
5645, 50, 553eqtr4d 2776 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (𝑛𝑐𝐴))
5756oveq2d 7430 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))) = ((log‘𝑛) / (𝑛𝑐𝐴)))
5857fveq2d 6895 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) = (abs‘((log‘𝑛) / (𝑛𝑐𝐴))))
5958breq1d 5154 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥 ↔ (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6036, 59sylibd 238 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6160expr 455 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → ((1 < 𝑛 ∧ (exp‘𝑧) < 𝑛) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6214, 61sylbid 239 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6362com23 86 . . . . . . 7 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6463ralrimdva 3144 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
65 breq1 5147 . . . . . . 7 (𝑦 = if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) → (𝑦 < 𝑛 ↔ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛))
6665rspceaimv 3614 . . . . . 6 ((if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6711, 64, 66syl6an 682 . . . . 5 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6867rexlimdva 3145 . . . 4 (𝐴 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6968ralimdv 3159 . . 3 (𝐴 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
70 simpr 483 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
711adantr 479 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝐴 ∈ ℝ)
7271rpefcld 16100 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (exp‘𝐴) ∈ ℝ+)
73 rpre 13028 . . . . . . . . 9 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
7473adantl 480 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
7572, 74rpcxpcld 26755 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → ((exp‘𝐴)↑𝑐𝑚) ∈ ℝ+)
7670, 75rpdivcld 13079 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℝ+)
7776rpcnd 13064 . . . . 5 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
7877ralrimiva 3136 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑚 ∈ ℝ+ (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
79 rpssre 13027 . . . . 5 + ⊆ ℝ
8079a1i 11 . . . 4 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
8178, 80rlim0lt 15504 . . 3 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥)))
82 relogcl 26597 . . . . . . . 8 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
8382adantl 480 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
84 simpr 483 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
851adantr 479 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
8684, 85rpcxpcld 26755 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
8783, 86rerpdivcld 13093 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℝ)
8887recnd 11281 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
8988ralrimiva 3136 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
9089, 80rlim0lt 15504 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
9169, 81, 903imtr4d 293 . 2 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0))
926, 91mpd 15 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  wss 3947  ifcif 4524   class class class wbr 5144  cmpt 5227  cfv 6544  (class class class)co 7414  cc 11145  cr 11146  0cc0 11147  1c1 11148   · cmul 11152   < clt 11287  cle 11288   / cdiv 11910  +crp 13020  abscabs 15232  𝑟 crli 15480  expce 16056  logclog 26576  𝑐ccxp 26577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9397  df-fi 9445  df-sup 9476  df-inf 9477  df-oi 9544  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-z 12603  df-dec 12722  df-uz 12867  df-q 12977  df-rp 13021  df-xneg 13138  df-xadd 13139  df-xmul 13140  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-fac 14284  df-bc 14313  df-hash 14341  df-shft 15065  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-limsup 15466  df-clim 15483  df-rlim 15484  df-sum 15684  df-ef 16062  df-sin 16064  df-cos 16065  df-pi 16067  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-hom 17283  df-cco 17284  df-rest 17430  df-topn 17431  df-0g 17449  df-gsum 17450  df-topgen 17451  df-pt 17452  df-prds 17455  df-xrs 17510  df-qtop 17515  df-imas 17516  df-xps 17518  df-mre 17592  df-mrc 17593  df-acs 17595  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19774  df-psmet 21329  df-xmet 21330  df-met 21331  df-bl 21332  df-mopn 21333  df-fbas 21334  df-fg 21335  df-cnfld 21338  df-top 22882  df-topon 22899  df-topsp 22921  df-bases 22935  df-cld 23009  df-ntr 23010  df-cls 23011  df-nei 23088  df-lp 23126  df-perf 23127  df-cn 23217  df-cnp 23218  df-haus 23305  df-tx 23552  df-hmeo 23745  df-fil 23836  df-fm 23928  df-flim 23929  df-flf 23930  df-xms 24312  df-ms 24313  df-tms 24314  df-cncf 24884  df-limc 25881  df-dv 25882  df-log 26578  df-cxp 26579
This theorem is referenced by:  cxploglim2  27002  logfacrlim  27248  chtppilimlem2  27498  chpchtlim  27503  dchrvmasumlema  27524  logdivsum  27557
  Copyright terms: Public domain W3C validator