MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Visualization version   GIF version

Theorem cxploglim 26888
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxploglim
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 12960 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 reefcl 16053 . . . 4 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ)
31, 2syl 17 . . 3 (𝐴 ∈ ℝ+ → (exp‘𝐴) ∈ ℝ)
4 efgt1 16084 . . 3 (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴))
5 cxp2limlem 26886 . . 3 (((exp‘𝐴) ∈ ℝ ∧ 1 < (exp‘𝐴)) → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
63, 4, 5syl2anc 584 . 2 (𝐴 ∈ ℝ+ → (𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0)
7 reefcl 16053 . . . . . . . 8 (𝑧 ∈ ℝ → (exp‘𝑧) ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (exp‘𝑧) ∈ ℝ)
9 1re 11174 . . . . . . 7 1 ∈ ℝ
10 ifcl 4534 . . . . . . 7 (((exp‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
118, 9, 10sylancl 586 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ)
12 rpre 12960 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
13 maxlt 13153 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (exp‘𝑧) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
149, 8, 12, 13mp3an3an 1469 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 ↔ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛)))
15 simprrr 781 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < 𝑛)
16 reeflog 26489 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (exp‘(log‘𝑛)) = 𝑛)
1716ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘(log‘𝑛)) = 𝑛)
1815, 17breqtrrd 5135 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝑧) < (exp‘(log‘𝑛)))
19 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 ∈ ℝ)
2012ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℝ)
21 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 1 < 𝑛)
2220, 21rplogcld 26538 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ+)
2322rpred 12995 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℝ)
24 eflt 16085 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (log‘𝑛) ∈ ℝ) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2519, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑧 < (log‘𝑛) ↔ (exp‘𝑧) < (exp‘(log‘𝑛))))
2618, 25mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑧 < (log‘𝑛))
27 breq2 5111 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → (𝑧 < 𝑚𝑧 < (log‘𝑛)))
28 id 22 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → 𝑚 = (log‘𝑛))
29 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑚 = (log‘𝑛) → ((exp‘𝐴)↑𝑐𝑚) = ((exp‘𝐴)↑𝑐(log‘𝑛)))
3028, 29oveq12d 7405 . . . . . . . . . . . . . . . . 17 (𝑚 = (log‘𝑛) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) = ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))))
3130fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝑚 = (log‘𝑛) → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) = (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))))
3231breq1d 5117 . . . . . . . . . . . . . . 15 (𝑚 = (log‘𝑛) → ((abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥 ↔ (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
3327, 32imbi12d 344 . . . . . . . . . . . . . 14 (𝑚 = (log‘𝑛) → ((𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) ↔ (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3433rspcv 3584 . . . . . . . . . . . . 13 ((log‘𝑛) ∈ ℝ+ → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3522, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (𝑧 < (log‘𝑛) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥)))
3626, 35mpid 44 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥))
371ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℝ)
3837relogefd 26537 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘(exp‘𝐴)) = 𝐴)
3938oveq2d 7403 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = ((log‘𝑛) · 𝐴))
4022rpcnd 12997 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (log‘𝑛) ∈ ℂ)
41 rpcn 12962 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝐴 ∈ ℂ)
4340, 42mulcomd 11195 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · 𝐴) = (𝐴 · (log‘𝑛)))
4439, 43eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) · (log‘(exp‘𝐴))) = (𝐴 · (log‘𝑛)))
4544fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))) = (exp‘(𝐴 · (log‘𝑛))))
463ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℝ)
4746recnd 11202 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ∈ ℂ)
48 efne0 16064 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
4942, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (exp‘𝐴) ≠ 0)
5047, 49, 40cxpefd 26621 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (exp‘((log‘𝑛) · (log‘(exp‘𝐴)))))
51 rpcn 12962 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
5251ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ∈ ℂ)
53 rpne0 12968 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ+𝑛 ≠ 0)
5453ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → 𝑛 ≠ 0)
5552, 54, 42cxpefd 26621 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (𝑛𝑐𝐴) = (exp‘(𝐴 · (log‘𝑛))))
5645, 50, 553eqtr4d 2774 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((exp‘𝐴)↑𝑐(log‘𝑛)) = (𝑛𝑐𝐴))
5756oveq2d 7403 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛))) = ((log‘𝑛) / (𝑛𝑐𝐴)))
5857fveq2d 6862 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) = (abs‘((log‘𝑛) / (𝑛𝑐𝐴))))
5958breq1d 5117 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → ((abs‘((log‘𝑛) / ((exp‘𝐴)↑𝑐(log‘𝑛)))) < 𝑥 ↔ (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6036, 59sylibd 239 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ (𝑛 ∈ ℝ+ ∧ (1 < 𝑛 ∧ (exp‘𝑧) < 𝑛))) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6160expr 456 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → ((1 < 𝑛 ∧ (exp‘𝑧) < 𝑛) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6214, 61sylbid 240 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6362com23 86 . . . . . . 7 (((𝐴 ∈ ℝ+𝑧 ∈ ℝ) ∧ 𝑛 ∈ ℝ+) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6463ralrimdva 3133 . . . . . 6 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
65 breq1 5110 . . . . . . 7 (𝑦 = if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) → (𝑦 < 𝑛 ↔ if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛))
6665rspceaimv 3594 . . . . . 6 ((if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (if(1 ≤ (exp‘𝑧), (exp‘𝑧), 1) < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥))
6711, 64, 66syl6an 684 . . . . 5 ((𝐴 ∈ ℝ+𝑧 ∈ ℝ) → (∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6867rexlimdva 3134 . . . 4 (𝐴 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
6968ralimdv 3147 . . 3 (𝐴 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
70 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
711adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝐴 ∈ ℝ)
7271rpefcld 16073 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (exp‘𝐴) ∈ ℝ+)
73 rpre 12960 . . . . . . . . 9 (𝑚 ∈ ℝ+𝑚 ∈ ℝ)
7473adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ)
7572, 74rpcxpcld 26642 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → ((exp‘𝐴)↑𝑐𝑚) ∈ ℝ+)
7670, 75rpdivcld 13012 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℝ+)
7776rpcnd 12997 . . . . 5 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
7877ralrimiva 3125 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑚 ∈ ℝ+ (𝑚 / ((exp‘𝐴)↑𝑐𝑚)) ∈ ℂ)
79 rpssre 12959 . . . . 5 + ⊆ ℝ
8079a1i 11 . . . 4 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
8178, 80rlim0lt 15475 . . 3 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑧 ∈ ℝ ∀𝑚 ∈ ℝ+ (𝑧 < 𝑚 → (abs‘(𝑚 / ((exp‘𝐴)↑𝑐𝑚))) < 𝑥)))
82 relogcl 26484 . . . . . . . 8 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
8382adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (log‘𝑛) ∈ ℝ)
84 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
851adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
8684, 85rpcxpcld 26642 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
8783, 86rerpdivcld 13026 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℝ)
8887recnd 11202 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
8988ralrimiva 3125 . . . 4 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ ((log‘𝑛) / (𝑛𝑐𝐴)) ∈ ℂ)
9089, 80rlim0lt 15475 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘((log‘𝑛) / (𝑛𝑐𝐴))) < 𝑥)))
9169, 81, 903imtr4d 294 . 2 (𝐴 ∈ ℝ+ → ((𝑚 ∈ ℝ+ ↦ (𝑚 / ((exp‘𝐴)↑𝑐𝑚))) ⇝𝑟 0 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0))
926, 91mpd 15 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  +crp 12951  abscabs 15200  𝑟 crli 15451  expce 16027  logclog 26463  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  cxploglim2  26889  logfacrlim  27135  chtppilimlem2  27385  chpchtlim  27390  dchrvmasumlema  27411  logdivsum  27444
  Copyright terms: Public domain W3C validator