MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0p1elfzo Structured version   Visualization version   GIF version

Theorem nn0p1elfzo 13641
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
nn0p1elfzo ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))

Proof of Theorem nn0p1elfzo
StepHypRef Expression
1 nn0ltp1le 12570 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ (𝐾 + 1) ≤ 𝑁))
21biimp3ar 1472 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 < 𝑁)
3 simpl1 1192 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
4 simpr 484 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
54adantr 480 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ0)
6 nn0ge0 12445 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantr 480 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝐾)
8 0re 11154 . . . . . . . . 9 0 ∈ ℝ
9 nn0re 12429 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 nn0re 12429 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
11 lelttr 11242 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
128, 9, 10, 11mp3an3an 1469 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 12mpand 695 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 → 0 < 𝑁))
1413imp 406 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 0 < 𝑁)
15 elnnnn0b 12464 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
165, 14, 15sylanbrc 583 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
17163adantl3 1169 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
18 simpr 484 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
193, 17, 183jca 1128 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
202, 19mpdan 687 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
21 elfzo0 13639 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2220, 21sylibr 234 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   < clt 11186  cle 11187  cn 12164  0cn0 12420  ..^cfzo 13593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-n0 12421  df-z 12508  df-uz 12772  df-fz 13447  df-fzo 13594
This theorem is referenced by:  wwlksnextproplem1  29890  eupth2lem3  30216  wrdt2ind  32926
  Copyright terms: Public domain W3C validator