MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0p1elfzo Structured version   Visualization version   GIF version

Theorem nn0p1elfzo 13672
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
nn0p1elfzo ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))

Proof of Theorem nn0p1elfzo
StepHypRef Expression
1 nn0ltp1le 12617 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ (𝐾 + 1) ≤ 𝑁))
21biimp3ar 1466 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 < 𝑁)
3 simpl1 1188 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
4 simpr 484 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
54adantr 480 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ0)
6 nn0ge0 12494 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantr 480 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝐾)
8 0re 11213 . . . . . . . . 9 0 ∈ ℝ
9 nn0re 12478 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 nn0re 12478 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
11 lelttr 11301 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
128, 9, 10, 11mp3an3an 1463 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 12mpand 692 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 → 0 < 𝑁))
1413imp 406 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 0 < 𝑁)
15 elnnnn0b 12513 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
165, 14, 15sylanbrc 582 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
17163adantl3 1165 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
18 simpr 484 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
193, 17, 183jca 1125 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
202, 19mpdan 684 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
21 elfzo0 13670 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2220, 21sylibr 233 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098   class class class wbr 5138  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11245  cle 11246  cn 12209  0cn0 12469  ..^cfzo 13624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625
This theorem is referenced by:  wwlksnextproplem1  29632  eupth2lem3  29958  wrdt2ind  32584
  Copyright terms: Public domain W3C validator