MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0p1elfzo Structured version   Visualization version   GIF version

Theorem nn0p1elfzo 13285
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
nn0p1elfzo ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))

Proof of Theorem nn0p1elfzo
StepHypRef Expression
1 nn0ltp1le 12235 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ (𝐾 + 1) ≤ 𝑁))
21biimp3ar 1472 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 < 𝑁)
3 simpl1 1193 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
4 simpr 488 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
54adantr 484 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ0)
6 nn0ge0 12115 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantr 484 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝐾)
8 0re 10835 . . . . . . . . 9 0 ∈ ℝ
9 nn0re 12099 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 nn0re 12099 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
11 lelttr 10923 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
128, 9, 10, 11mp3an3an 1469 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 12mpand 695 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 → 0 < 𝑁))
1413imp 410 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 0 < 𝑁)
15 elnnnn0b 12134 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
165, 14, 15sylanbrc 586 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
17163adantl3 1170 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
18 simpr 488 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
193, 17, 183jca 1130 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
202, 19mpdan 687 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
21 elfzo0 13283 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2220, 21sylibr 237 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110   class class class wbr 5053  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cn 11830  0cn0 12090  ..^cfzo 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239
This theorem is referenced by:  wwlksnextproplem1  27993  eupth2lem3  28319  wrdt2ind  30945
  Copyright terms: Public domain W3C validator