MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvga Structured version   Visualization version   GIF version

Theorem algcvga 16555
Description: The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvga (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐾(𝑧)   𝑁(𝑧)

Proof of Theorem algcvga
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . 4 𝐶:𝑆⟶ℕ0
32ffvelcdmi 7057 . . 3 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2833 . 2 (𝐴𝑆𝑁 ∈ ℕ0)
5 nn0z 12560 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 eluz1 12803 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁𝐾)))
7 2fveq3 6865 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑁)))
87eqeq1d 2732 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑁)) = 0))
98imbi2d 340 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)))
10 2fveq3 6865 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑘)))
1110eqeq1d 2732 . . . . . . . 8 (𝑚 = 𝑘 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
1211imbi2d 340 . . . . . . 7 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0)))
13 2fveq3 6865 . . . . . . . . 9 (𝑚 = (𝑘 + 1) → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅‘(𝑘 + 1))))
1413eqeq1d 2732 . . . . . . . 8 (𝑚 = (𝑘 + 1) → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
1514imbi2d 340 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
16 2fveq3 6865 . . . . . . . . 9 (𝑚 = 𝐾 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝐾)))
1716eqeq1d 2732 . . . . . . . 8 (𝑚 = 𝐾 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝐾)) = 0))
1817imbi2d 340 . . . . . . 7 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
19 algcvga.1 . . . . . . . . 9 𝐹:𝑆𝑆
20 algcvga.2 . . . . . . . . 9 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
21 algcvga.4 . . . . . . . . 9 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
2219, 20, 2, 21, 1algcvg 16552 . . . . . . . 8 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
2322a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0))
24 nn0ge0 12473 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → 0 ≤ 𝑁)
26 0re 11182 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
27 nn0re 12457 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
28 zre 12539 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
29 letr 11274 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3026, 27, 28, 29mp3an3an 1469 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3125, 30mpand 695 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘 → 0 ≤ 𝑘))
32 elnn0z 12548 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
3332simplbi2 500 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3531, 34syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
364, 35sylan 580 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
3736impr 454 . . . . . . . . . . . 12 ((𝐴𝑆 ∧ (𝑘 ∈ ℤ ∧ 𝑁𝑘)) → 𝑘 ∈ ℕ0)
3837expcom 413 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
39383adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
4039ancld 550 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → (𝐴𝑆𝑘 ∈ ℕ0)))
41 nn0uz 12841 . . . . . . . . . . . . 13 0 = (ℤ‘0)
42 0zd 12547 . . . . . . . . . . . . 13 (𝐴𝑆 → 0 ∈ ℤ)
43 id 22 . . . . . . . . . . . . 13 (𝐴𝑆𝐴𝑆)
4419a1i 11 . . . . . . . . . . . . 13 (𝐴𝑆𝐹:𝑆𝑆)
4541, 20, 42, 43, 44algrf 16549 . . . . . . . . . . . 12 (𝐴𝑆𝑅:ℕ0𝑆)
4645ffvelcdmda 7058 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
47 2fveq3 6865 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
4847neeq1d 2985 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
49 fveq2 6860 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
5047, 49breq12d 5122 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5148, 50imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
5251, 21vtoclga 3546 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5319, 2algcvgb 16554 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ↔ (((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))))
54 simpr 484 . . . . . . . . . . . . 13 ((((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5553, 54biimtrdi 253 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)))
5652, 55mpd 15 . . . . . . . . . . 11 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5746, 56syl 17 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5841, 20, 42, 43, 44algrp1 16550 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
5958fveqeq2d 6868 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘(𝑘 + 1))) = 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
6057, 59sylibrd 259 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
6140, 60syl6 35 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
6261a2d 29 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → ((𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0) → (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
639, 12, 15, 18, 23, 62uzind 12632 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0))
64633expib 1122 . . . . 5 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
656, 64sylbid 240 . . . 4 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
665, 65syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
6766com3r 87 . 2 (𝐴𝑆 → (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0)))
684, 67mpd 15 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {csn 4591   class class class wbr 5109   × cxp 5638  ccom 5644  wf 6509  cfv 6513  (class class class)co 7389  1st c1st 7968  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cle 11215  0cn0 12448  cz 12535  cuz 12799  seqcseq 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-seq 13973
This theorem is referenced by:  algfx  16556  eucalgcvga  16562
  Copyright terms: Public domain W3C validator