Step | Hyp | Ref
| Expression |
1 | | algcvga.5 |
. . 3
⊢ 𝑁 = (𝐶‘𝐴) |
2 | | algcvga.3 |
. . . 4
⊢ 𝐶:𝑆⟶ℕ0 |
3 | 2 | ffvelrni 6960 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈
ℕ0) |
4 | 1, 3 | eqeltrid 2843 |
. 2
⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈
ℕ0) |
5 | | nn0z 12343 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
6 | | eluz1 12586 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝐾 ∈
(ℤ≥‘𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾))) |
7 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝐶‘(𝑅‘𝑚)) = (𝐶‘(𝑅‘𝑁))) |
8 | 7 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝐶‘(𝑅‘𝑚)) = 0 ↔ (𝐶‘(𝑅‘𝑁)) = 0)) |
9 | 8 | imbi2d 341 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑚)) = 0) ↔ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0))) |
10 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (𝐶‘(𝑅‘𝑚)) = (𝐶‘(𝑅‘𝑘))) |
11 | 10 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → ((𝐶‘(𝑅‘𝑚)) = 0 ↔ (𝐶‘(𝑅‘𝑘)) = 0)) |
12 | 11 | imbi2d 341 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑚)) = 0) ↔ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑘)) = 0))) |
13 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑚 = (𝑘 + 1) → (𝐶‘(𝑅‘𝑚)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
14 | 13 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 + 1) → ((𝐶‘(𝑅‘𝑚)) = 0 ↔ (𝐶‘(𝑅‘(𝑘 + 1))) = 0)) |
15 | 14 | imbi2d 341 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 1) → ((𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑚)) = 0) ↔ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))) |
16 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑚 = 𝐾 → (𝐶‘(𝑅‘𝑚)) = (𝐶‘(𝑅‘𝐾))) |
17 | 16 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑚 = 𝐾 → ((𝐶‘(𝑅‘𝑚)) = 0 ↔ (𝐶‘(𝑅‘𝐾)) = 0)) |
18 | 17 | imbi2d 341 |
. . . . . . 7
⊢ (𝑚 = 𝐾 → ((𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑚)) = 0) ↔ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝐾)) = 0))) |
19 | | algcvga.1 |
. . . . . . . . 9
⊢ 𝐹:𝑆⟶𝑆 |
20 | | algcvga.2 |
. . . . . . . . 9
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴})) |
21 | | algcvga.4 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
22 | 19, 20, 2, 21, 1 | algcvg 16281 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0)) |
24 | | nn0ge0 12258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ 0 ≤ 𝑁) |
26 | | 0re 10977 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
27 | | nn0re 12242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
28 | | zre 12323 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
29 | | letr 11069 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ ∧ 𝑘
∈ ℝ) → ((0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 0 ≤ 𝑘)) |
30 | 26, 27, 28, 29 | mp3an3an 1466 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((0 ≤ 𝑁 ∧
𝑁 ≤ 𝑘) → 0 ≤ 𝑘)) |
31 | 25, 30 | mpand 692 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁 ≤ 𝑘 → 0 ≤ 𝑘)) |
32 | | elnn0z 12332 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℤ
∧ 0 ≤ 𝑘)) |
33 | 32 | simplbi2 501 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (0 ≤
𝑘 → 𝑘 ∈
ℕ0)) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (0 ≤ 𝑘 →
𝑘 ∈
ℕ0)) |
35 | 31, 34 | syld 47 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁 ≤ 𝑘 → 𝑘 ∈
ℕ0)) |
36 | 4, 35 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑘 ∈
ℕ0)) |
37 | 36 | impr 455 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑆 ∧ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘)) → 𝑘 ∈ ℕ0) |
38 | 37 | expcom 414 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝐴 ∈ 𝑆 → 𝑘 ∈
ℕ0)) |
39 | 38 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝐴 ∈ 𝑆 → 𝑘 ∈
ℕ0)) |
40 | 39 | ancld 551 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝑘 ∈
ℕ0))) |
41 | | nn0uz 12620 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
42 | | 0zd 12331 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) |
43 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) |
44 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
45 | 41, 20, 42, 43, 44 | algrf 16278 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
46 | 45 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
47 | | 2fveq3 6779 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘(𝐹‘𝑧)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
48 | 47 | neeq1d 3003 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
49 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘𝑧) = (𝐶‘(𝑅‘𝑘))) |
50 | 47, 49 | breq12d 5087 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
51 | 48, 50 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))))) |
52 | 51, 21 | vtoclga 3513 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
53 | 19, 2 | algcvgb 16283 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))) ↔ (((𝐶‘(𝑅‘𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))) ∧ ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)))) |
54 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝐶‘(𝑅‘𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))) ∧ ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)) → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)) |
55 | 53, 54 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))) → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0))) |
56 | 52, 55 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)) |
57 | 46, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)) |
58 | 41, 20, 42, 43, 44 | algrp1 16279 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
59 | 58 | fveqeq2d 6782 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘(𝑘 + 1))) = 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) = 0)) |
60 | 57, 59 | sylibrd 258 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)) |
61 | 40, 60 | syl6 35 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝐴 ∈ 𝑆 → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))) |
62 | 61 | a2d 29 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → ((𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑘)) = 0) → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))) |
63 | 9, 12, 15, 18, 23, 62 | uzind 12412 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾) → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝐾)) = 0)) |
64 | 63 | 3expib 1121 |
. . . . 5
⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾) → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝐾)) = 0))) |
65 | 6, 64 | sylbid 239 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝐾 ∈
(ℤ≥‘𝑁) → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝐾)) = 0))) |
66 | 5, 65 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(ℤ≥‘𝑁) → (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝐾)) = 0))) |
67 | 66 | com3r 87 |
. 2
⊢ (𝐴 ∈ 𝑆 → (𝑁 ∈ ℕ0 → (𝐾 ∈
(ℤ≥‘𝑁) → (𝐶‘(𝑅‘𝐾)) = 0))) |
68 | 4, 67 | mpd 15 |
1
⊢ (𝐴 ∈ 𝑆 → (𝐾 ∈ (ℤ≥‘𝑁) → (𝐶‘(𝑅‘𝐾)) = 0)) |