MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvga Structured version   Visualization version   GIF version

Theorem algcvga 16520
Description: The countdown function 𝐢 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:π‘†βŸΆπ‘†
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (β„•0 Γ— {𝐴}))
algcvga.3 𝐢:π‘†βŸΆβ„•0
algcvga.4 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§)))
algcvga.5 𝑁 = (πΆβ€˜π΄)
Assertion
Ref Expression
algcvga (𝐴 ∈ 𝑆 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0))
Distinct variable groups:   𝑧,𝐢   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐾(𝑧)   𝑁(𝑧)

Proof of Theorem algcvga
Dummy variables π‘˜ π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3 𝑁 = (πΆβ€˜π΄)
2 algcvga.3 . . . 4 𝐢:π‘†βŸΆβ„•0
32ffvelcdmi 7084 . . 3 (𝐴 ∈ 𝑆 β†’ (πΆβ€˜π΄) ∈ β„•0)
41, 3eqeltrid 2835 . 2 (𝐴 ∈ 𝑆 β†’ 𝑁 ∈ β„•0)
5 nn0z 12587 . . . 4 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„€)
6 eluz1 12830 . . . . 5 (𝑁 ∈ β„€ β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) ↔ (𝐾 ∈ β„€ ∧ 𝑁 ≀ 𝐾)))
7 2fveq3 6895 . . . . . . . . 9 (π‘š = 𝑁 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = (πΆβ€˜(π‘…β€˜π‘)))
87eqeq1d 2732 . . . . . . . 8 (π‘š = 𝑁 β†’ ((πΆβ€˜(π‘…β€˜π‘š)) = 0 ↔ (πΆβ€˜(π‘…β€˜π‘)) = 0))
98imbi2d 339 . . . . . . 7 (π‘š = 𝑁 β†’ ((𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = 0) ↔ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘)) = 0)))
10 2fveq3 6895 . . . . . . . . 9 (π‘š = π‘˜ β†’ (πΆβ€˜(π‘…β€˜π‘š)) = (πΆβ€˜(π‘…β€˜π‘˜)))
1110eqeq1d 2732 . . . . . . . 8 (π‘š = π‘˜ β†’ ((πΆβ€˜(π‘…β€˜π‘š)) = 0 ↔ (πΆβ€˜(π‘…β€˜π‘˜)) = 0))
1211imbi2d 339 . . . . . . 7 (π‘š = π‘˜ β†’ ((𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = 0) ↔ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘˜)) = 0)))
13 2fveq3 6895 . . . . . . . . 9 (π‘š = (π‘˜ + 1) β†’ (πΆβ€˜(π‘…β€˜π‘š)) = (πΆβ€˜(π‘…β€˜(π‘˜ + 1))))
1413eqeq1d 2732 . . . . . . . 8 (π‘š = (π‘˜ + 1) β†’ ((πΆβ€˜(π‘…β€˜π‘š)) = 0 ↔ (πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0))
1514imbi2d 339 . . . . . . 7 (π‘š = (π‘˜ + 1) β†’ ((𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = 0) ↔ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0)))
16 2fveq3 6895 . . . . . . . . 9 (π‘š = 𝐾 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = (πΆβ€˜(π‘…β€˜πΎ)))
1716eqeq1d 2732 . . . . . . . 8 (π‘š = 𝐾 β†’ ((πΆβ€˜(π‘…β€˜π‘š)) = 0 ↔ (πΆβ€˜(π‘…β€˜πΎ)) = 0))
1817imbi2d 339 . . . . . . 7 (π‘š = 𝐾 β†’ ((𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘š)) = 0) ↔ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0)))
19 algcvga.1 . . . . . . . . 9 𝐹:π‘†βŸΆπ‘†
20 algcvga.2 . . . . . . . . 9 𝑅 = seq0((𝐹 ∘ 1st ), (β„•0 Γ— {𝐴}))
21 algcvga.4 . . . . . . . . 9 (𝑧 ∈ 𝑆 β†’ ((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§)))
2219, 20, 2, 21, 1algcvg 16517 . . . . . . . 8 (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘)) = 0)
2322a1i 11 . . . . . . 7 (𝑁 ∈ β„€ β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘)) = 0))
24 nn0ge0 12501 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
2524adantr 479 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„€) β†’ 0 ≀ 𝑁)
26 0re 11220 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
27 nn0re 12485 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ ℝ)
28 zre 12566 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ β„€ β†’ π‘˜ ∈ ℝ)
29 letr 11312 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ π‘˜ ∈ ℝ) β†’ ((0 ≀ 𝑁 ∧ 𝑁 ≀ π‘˜) β†’ 0 ≀ π‘˜))
3026, 27, 28, 29mp3an3an 1465 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„€) β†’ ((0 ≀ 𝑁 ∧ 𝑁 ≀ π‘˜) β†’ 0 ≀ π‘˜))
3125, 30mpand 691 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„€) β†’ (𝑁 ≀ π‘˜ β†’ 0 ≀ π‘˜))
32 elnn0z 12575 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ β„•0 ↔ (π‘˜ ∈ β„€ ∧ 0 ≀ π‘˜))
3332simplbi2 499 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ β„€ β†’ (0 ≀ π‘˜ β†’ π‘˜ ∈ β„•0))
3433adantl 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„€) β†’ (0 ≀ π‘˜ β†’ π‘˜ ∈ β„•0))
3531, 34syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„€) β†’ (𝑁 ≀ π‘˜ β†’ π‘˜ ∈ β„•0))
364, 35sylan 578 . . . . . . . . . . . . 13 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„€) β†’ (𝑁 ≀ π‘˜ β†’ π‘˜ ∈ β„•0))
3736impr 453 . . . . . . . . . . . 12 ((𝐴 ∈ 𝑆 ∧ (π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜)) β†’ π‘˜ ∈ β„•0)
3837expcom 412 . . . . . . . . . . 11 ((π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜) β†’ (𝐴 ∈ 𝑆 β†’ π‘˜ ∈ β„•0))
39383adant1 1128 . . . . . . . . . 10 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜) β†’ (𝐴 ∈ 𝑆 β†’ π‘˜ ∈ β„•0))
4039ancld 549 . . . . . . . . 9 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜) β†’ (𝐴 ∈ 𝑆 β†’ (𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0)))
41 nn0uz 12868 . . . . . . . . . . . . 13 β„•0 = (β„€β‰₯β€˜0)
42 0zd 12574 . . . . . . . . . . . . 13 (𝐴 ∈ 𝑆 β†’ 0 ∈ β„€)
43 id 22 . . . . . . . . . . . . 13 (𝐴 ∈ 𝑆 β†’ 𝐴 ∈ 𝑆)
4419a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ 𝑆 β†’ 𝐹:π‘†βŸΆπ‘†)
4541, 20, 42, 43, 44algrf 16514 . . . . . . . . . . . 12 (𝐴 ∈ 𝑆 β†’ 𝑅:β„•0βŸΆπ‘†)
4645ffvelcdmda 7085 . . . . . . . . . . 11 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ (π‘…β€˜π‘˜) ∈ 𝑆)
47 2fveq3 6895 . . . . . . . . . . . . . . 15 (𝑧 = (π‘…β€˜π‘˜) β†’ (πΆβ€˜(πΉβ€˜π‘§)) = (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))))
4847neeq1d 2998 . . . . . . . . . . . . . 14 (𝑧 = (π‘…β€˜π‘˜) β†’ ((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 ↔ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) β‰  0))
49 fveq2 6890 . . . . . . . . . . . . . . 15 (𝑧 = (π‘…β€˜π‘˜) β†’ (πΆβ€˜π‘§) = (πΆβ€˜(π‘…β€˜π‘˜)))
5047, 49breq12d 5160 . . . . . . . . . . . . . 14 (𝑧 = (π‘…β€˜π‘˜) β†’ ((πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§) ↔ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))))
5148, 50imbi12d 343 . . . . . . . . . . . . 13 (𝑧 = (π‘…β€˜π‘˜) β†’ (((πΆβ€˜(πΉβ€˜π‘§)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜π‘§)) < (πΆβ€˜π‘§)) ↔ ((πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜)))))
5251, 21vtoclga 3565 . . . . . . . . . . . 12 ((π‘…β€˜π‘˜) ∈ 𝑆 β†’ ((πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))))
5319, 2algcvgb 16519 . . . . . . . . . . . . 13 ((π‘…β€˜π‘˜) ∈ 𝑆 β†’ (((πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))) ↔ (((πΆβ€˜(π‘…β€˜π‘˜)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))) ∧ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0))))
54 simpr 483 . . . . . . . . . . . . 13 ((((πΆβ€˜(π‘…β€˜π‘˜)) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))) ∧ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0)) β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0))
5553, 54syl6bi 252 . . . . . . . . . . . 12 ((π‘…β€˜π‘˜) ∈ 𝑆 β†’ (((πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) β‰  0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) < (πΆβ€˜(π‘…β€˜π‘˜))) β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0)))
5652, 55mpd 15 . . . . . . . . . . 11 ((π‘…β€˜π‘˜) ∈ 𝑆 β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0))
5746, 56syl 17 . . . . . . . . . 10 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0))
5841, 20, 42, 43, 44algrp1 16515 . . . . . . . . . . 11 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ (π‘…β€˜(π‘˜ + 1)) = (πΉβ€˜(π‘…β€˜π‘˜)))
5958fveqeq2d 6898 . . . . . . . . . 10 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ ((πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0 ↔ (πΆβ€˜(πΉβ€˜(π‘…β€˜π‘˜))) = 0))
6057, 59sylibrd 258 . . . . . . . . 9 ((𝐴 ∈ 𝑆 ∧ π‘˜ ∈ β„•0) β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0))
6140, 60syl6 35 . . . . . . . 8 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜) β†’ (𝐴 ∈ 𝑆 β†’ ((πΆβ€˜(π‘…β€˜π‘˜)) = 0 β†’ (πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0)))
6261a2d 29 . . . . . . 7 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ β„€ ∧ 𝑁 ≀ π‘˜) β†’ ((𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜π‘˜)) = 0) β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜(π‘˜ + 1))) = 0)))
639, 12, 15, 18, 23, 62uzind 12658 . . . . . 6 ((𝑁 ∈ β„€ ∧ 𝐾 ∈ β„€ ∧ 𝑁 ≀ 𝐾) β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0))
64633expib 1120 . . . . 5 (𝑁 ∈ β„€ β†’ ((𝐾 ∈ β„€ ∧ 𝑁 ≀ 𝐾) β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0)))
656, 64sylbid 239 . . . 4 (𝑁 ∈ β„€ β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0)))
665, 65syl 17 . . 3 (𝑁 ∈ β„•0 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (𝐴 ∈ 𝑆 β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0)))
6766com3r 87 . 2 (𝐴 ∈ 𝑆 β†’ (𝑁 ∈ β„•0 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0)))
684, 67mpd 15 1 (𝐴 ∈ 𝑆 β†’ (𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ (πΆβ€˜(π‘…β€˜πΎ)) = 0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  {csn 4627   class class class wbr 5147   Γ— cxp 5673   ∘ ccom 5679  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  1st c1st 7975  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252   ≀ cle 11253  β„•0cn0 12476  β„€cz 12562  β„€β‰₯cuz 12826  seqcseq 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-seq 13971
This theorem is referenced by:  algfx  16521  eucalgcvga  16527
  Copyright terms: Public domain W3C validator