MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fsub Structured version   Visualization version   GIF version

Theorem i1fsub 24606
Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fsub ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f𝐺) ∈ dom ∫1)

Proof of Theorem i1fsub
StepHypRef Expression
1 reex 10820 . . 3 ℝ ∈ V
2 i1ff 24573 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
3 ax-resscn 10786 . . . 4 ℝ ⊆ ℂ
4 fss 6562 . . . 4 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
52, 3, 4sylancl 589 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℂ)
6 i1ff 24573 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
7 fss 6562 . . . 4 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
86, 3, 7sylancl 589 . . 3 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℂ)
9 ofnegsub 11828 . . 3 ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
101, 5, 8, 9mp3an3an 1469 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
11 simpl 486 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
12 simpr 488 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
13 neg1rr 11945 . . . . 5 -1 ∈ ℝ
1413a1i 11 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → -1 ∈ ℝ)
1512, 14i1fmulc 24601 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1)
1611, 15i1fadd 24592 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) ∈ dom ∫1)
1710, 16eqeltrrd 2839 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866  {csn 4541   × cxp 5549  dom cdm 5551  wf 6376  (class class class)co 7213  f cof 7467  cc 10727  cr 10728  1c1 10730   + caddc 10732   · cmul 10734  cmin 11062  -cneg 11063  1citg1 24512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xadd 12705  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-xmet 20356  df-met 20357  df-ovol 24361  df-vol 24362  df-mbf 24516  df-itg1 24517
This theorem is referenced by:  itg1lea  24610  mbfi1flimlem  24620  itg2addnclem  35565  itg2addnclem3  35567
  Copyright terms: Public domain W3C validator