Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1fsub | Structured version Visualization version GIF version |
Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
i1fsub | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11008 | . . 3 ⊢ ℝ ∈ V | |
2 | i1ff 24885 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
3 | ax-resscn 10974 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | fss 6647 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) | |
5 | 2, 3, 4 | sylancl 587 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℂ) |
6 | i1ff 24885 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
7 | fss 6647 | . . . 4 ⊢ ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) | |
8 | 6, 3, 7 | sylancl 587 | . . 3 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℂ) |
9 | ofnegsub 12017 | . . 3 ⊢ ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
10 | 1, 5, 8, 9 | mp3an3an 1467 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
11 | simpl 484 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
12 | simpr 486 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
13 | neg1rr 12134 | . . . . 5 ⊢ -1 ∈ ℝ | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → -1 ∈ ℝ) |
15 | 12, 14 | i1fmulc 24913 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1) |
16 | 11, 15 | i1fadd 24904 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) ∈ dom ∫1) |
17 | 10, 16 | eqeltrrd 2838 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 {csn 4565 × cxp 5598 dom cdm 5600 ⟶wf 6454 (class class class)co 7307 ∘f cof 7563 ℂcc 10915 ℝcr 10916 1c1 10918 + caddc 10920 · cmul 10922 − cmin 11251 -cneg 11252 ∫1citg1 24824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xadd 12895 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-xmet 20635 df-met 20636 df-ovol 24673 df-vol 24674 df-mbf 24828 df-itg1 24829 |
This theorem is referenced by: itg1lea 24922 mbfi1flimlem 24932 itg2addnclem 35872 itg2addnclem3 35874 |
Copyright terms: Public domain | W3C validator |