MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   GIF version

Theorem logtayl2 26705
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
logtayl2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem logtayl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12922 . . 3 ℕ = (ℤ‘1)
2 1zzd 12650 . . 3 (𝐴𝑆 → 1 ∈ ℤ)
3 neg1cn 12381 . . . 4 -1 ∈ ℂ
43a1i 11 . . 3 (𝐴𝑆 → -1 ∈ ℂ)
5 ax-1cn 11214 . . . . . 6 1 ∈ ℂ
6 logtayl2.s . . . . . . . . 9 𝑆 = (1(ball‘(abs ∘ − ))1)
76eleq2i 2832 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (1(ball‘(abs ∘ − ))1))
8 cnxmet 24794 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
9 1xr 11321 . . . . . . . . 9 1 ∈ ℝ*
10 elbl 24399 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1)))
118, 5, 9, 10mp3an 1462 . . . . . . . 8 (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
127, 11bitri 275 . . . . . . 7 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
1312simplbi 497 . . . . . 6 (𝐴𝑆𝐴 ∈ ℂ)
14 subcl 11508 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
155, 13, 14sylancr 587 . . . . 5 (𝐴𝑆 → (1 − 𝐴) ∈ ℂ)
16 eqid 2736 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 24792 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
185, 13, 17sylancr 587 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
1912simprbi 496 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) < 1)
2018, 19eqbrtrrd 5166 . . . . 5 (𝐴𝑆 → (abs‘(1 − 𝐴)) < 1)
21 logtayl 26703 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
2215, 20, 21syl2anc 584 . . . 4 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
23 nncan 11539 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
245, 13, 23sylancr 587 . . . . . 6 (𝐴𝑆 → (1 − (1 − 𝐴)) = 𝐴)
2524fveq2d 6909 . . . . 5 (𝐴𝑆 → (log‘(1 − (1 − 𝐴))) = (log‘𝐴))
2625negeqd 11503 . . . 4 (𝐴𝑆 → -(log‘(1 − (1 − 𝐴))) = -(log‘𝐴))
2722, 26breqtrd 5168 . . 3 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴))
28 oveq2 7440 . . . . . . 7 (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛))
29 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
3028, 29oveq12d 7450 . . . . . 6 (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛))
31 eqid 2736 . . . . . 6 (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))
32 ovex 7465 . . . . . 6 (((1 − 𝐴)↑𝑛) / 𝑛) ∈ V
3330, 31, 32fvmpt 7015 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
3433adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
35 nnnn0 12535 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
36 expcl 14121 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
3715, 35, 36syl2an 596 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
38 nncn 12275 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3938adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
40 nnne0 12301 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4140adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ≠ 0)
4237, 39, 41divcld 12044 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ)
4334, 42eqeltrd 2840 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ)
4437, 39, 41divnegd 12057 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
4542mulm1d 11716 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛))
4635adantl 481 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 expcl 14121 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
483, 46, 47sylancr 587 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑𝑛) ∈ ℂ)
49 subcl 11508 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5013, 5, 49sylancl 586 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 − 1) ∈ ℂ)
51 expcl 14121 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5250, 35, 51syl2an 596 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5348, 52mulneg1d 11717 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
543a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ∈ ℂ)
55 neg1ne0 12383 . . . . . . . . . . . 12 -1 ≠ 0
5655a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ≠ 0)
57 nnz 12636 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5857adantl 481 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
5954, 56, 58expm1d 14197 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1))
605a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ∈ ℂ)
61 ax-1ne0 11225 . . . . . . . . . . . 12 1 ≠ 0
6261a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ≠ 0)
6348, 60, 62divneg2d 12058 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1))
6448div1d 12036 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛))
6564negeqd 11503 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛))
6659, 63, 653eqtr2d 2782 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛))
6766oveq1d 7447 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
6850mulm1d 11716 . . . . . . . . . . . . 13 (𝐴𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1))
69 negsubdi2 11569 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
7013, 5, 69sylancl 586 . . . . . . . . . . . . 13 (𝐴𝑆 → -(𝐴 − 1) = (1 − 𝐴))
7168, 70eqtr2d 2777 . . . . . . . . . . . 12 (𝐴𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1)))
7271oveq1d 7447 . . . . . . . . . . 11 (𝐴𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
7372adantr 480 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
74 mulexp 14143 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
753, 50, 35, 74mp3an3an 1468 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7673, 75eqtrd 2776 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7776negeqd 11503 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7853, 67, 773eqtr4d 2786 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛))
7978oveq1d 7447 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
8044, 45, 793eqtr4d 2786 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛))
81 nnm1nn0 12569 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8281adantl 481 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
83 expcl 14121 . . . . . . 7 ((-1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ)
843, 82, 83sylancr 587 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
8584, 52, 39, 41div23d 12081 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
8680, 85eqtr2d 2777 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
87 oveq1 7439 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq2d 7448 . . . . . . . 8 (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1)))
8988, 29oveq12d 7450 . . . . . . 7 (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛))
90 oveq2 7440 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛))
9189, 90oveq12d 7450 . . . . . 6 (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
92 eqid 2736 . . . . . 6 (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))
93 ovex 7465 . . . . . 6 (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) ∈ V
9491, 92, 93fvmpt 7015 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9594adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9634oveq2d 7448 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
9786, 95, 963eqtr4d 2786 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)))
981, 2, 4, 27, 43, 97isermulc2 15695 . 2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴)))
996dvlog2lem 26695 . . . . . . . 8 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
10099sseli 3978 . . . . . . 7 (𝐴𝑆𝐴 ∈ (ℂ ∖ (-∞(,]0)))
101 eqid 2736 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
102101logdmn0 26683 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ≠ 0)
103100, 102syl 17 . . . . . 6 (𝐴𝑆𝐴 ≠ 0)
10413, 103logcld 26613 . . . . 5 (𝐴𝑆 → (log‘𝐴) ∈ ℂ)
105104negcld 11608 . . . 4 (𝐴𝑆 → -(log‘𝐴) ∈ ℂ)
106105mulm1d 11716 . . 3 (𝐴𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴))
107104negnegd 11612 . . 3 (𝐴𝑆 → --(log‘𝐴) = (log‘𝐴))
108106, 107eqtrd 2776 . 2 (𝐴𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴))
10998, 108breqtrd 5168 1 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  cdif 3947   class class class wbr 5142  cmpt 5224  ccom 5688  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  -∞cmnf 11294  *cxr 11295   < clt 11296  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  0cn0 12528  cz 12615  (,]cioc 13389  seqcseq 14043  cexp 14103  abscabs 15274  cli 15521  ∞Metcxmet 21350  ballcbl 21352  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-tan 16108  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-ulm 26421  df-log 26599
This theorem is referenced by:  stirlinglem5  46098
  Copyright terms: Public domain W3C validator