MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   GIF version

Theorem logtayl2 25722
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
logtayl2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem logtayl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12550 . . 3 ℕ = (ℤ‘1)
2 1zzd 12281 . . 3 (𝐴𝑆 → 1 ∈ ℤ)
3 neg1cn 12017 . . . 4 -1 ∈ ℂ
43a1i 11 . . 3 (𝐴𝑆 → -1 ∈ ℂ)
5 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
6 logtayl2.s . . . . . . . . 9 𝑆 = (1(ball‘(abs ∘ − ))1)
76eleq2i 2830 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (1(ball‘(abs ∘ − ))1))
8 cnxmet 23842 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
9 1xr 10965 . . . . . . . . 9 1 ∈ ℝ*
10 elbl 23449 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1)))
118, 5, 9, 10mp3an 1459 . . . . . . . 8 (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
127, 11bitri 274 . . . . . . 7 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
1312simplbi 497 . . . . . 6 (𝐴𝑆𝐴 ∈ ℂ)
14 subcl 11150 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
155, 13, 14sylancr 586 . . . . 5 (𝐴𝑆 → (1 − 𝐴) ∈ ℂ)
16 eqid 2738 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 23840 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
185, 13, 17sylancr 586 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
1912simprbi 496 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) < 1)
2018, 19eqbrtrrd 5094 . . . . 5 (𝐴𝑆 → (abs‘(1 − 𝐴)) < 1)
21 logtayl 25720 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
2215, 20, 21syl2anc 583 . . . 4 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
23 nncan 11180 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
245, 13, 23sylancr 586 . . . . . 6 (𝐴𝑆 → (1 − (1 − 𝐴)) = 𝐴)
2524fveq2d 6760 . . . . 5 (𝐴𝑆 → (log‘(1 − (1 − 𝐴))) = (log‘𝐴))
2625negeqd 11145 . . . 4 (𝐴𝑆 → -(log‘(1 − (1 − 𝐴))) = -(log‘𝐴))
2722, 26breqtrd 5096 . . 3 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴))
28 oveq2 7263 . . . . . . 7 (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛))
29 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
3028, 29oveq12d 7273 . . . . . 6 (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛))
31 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))
32 ovex 7288 . . . . . 6 (((1 − 𝐴)↑𝑛) / 𝑛) ∈ V
3330, 31, 32fvmpt 6857 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
3433adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
35 nnnn0 12170 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
36 expcl 13728 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
3715, 35, 36syl2an 595 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
38 nncn 11911 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3938adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
40 nnne0 11937 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4140adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ≠ 0)
4237, 39, 41divcld 11681 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ)
4334, 42eqeltrd 2839 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ)
4437, 39, 41divnegd 11694 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
4542mulm1d 11357 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛))
4635adantl 481 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 expcl 13728 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
483, 46, 47sylancr 586 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑𝑛) ∈ ℂ)
49 subcl 11150 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5013, 5, 49sylancl 585 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 − 1) ∈ ℂ)
51 expcl 13728 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5250, 35, 51syl2an 595 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5348, 52mulneg1d 11358 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
543a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ∈ ℂ)
55 neg1ne0 12019 . . . . . . . . . . . 12 -1 ≠ 0
5655a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ≠ 0)
57 nnz 12272 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5857adantl 481 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
5954, 56, 58expm1d 13802 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1))
605a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ∈ ℂ)
61 ax-1ne0 10871 . . . . . . . . . . . 12 1 ≠ 0
6261a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ≠ 0)
6348, 60, 62divneg2d 11695 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1))
6448div1d 11673 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛))
6564negeqd 11145 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛))
6659, 63, 653eqtr2d 2784 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛))
6766oveq1d 7270 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
6850mulm1d 11357 . . . . . . . . . . . . 13 (𝐴𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1))
69 negsubdi2 11210 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
7013, 5, 69sylancl 585 . . . . . . . . . . . . 13 (𝐴𝑆 → -(𝐴 − 1) = (1 − 𝐴))
7168, 70eqtr2d 2779 . . . . . . . . . . . 12 (𝐴𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1)))
7271oveq1d 7270 . . . . . . . . . . 11 (𝐴𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
7372adantr 480 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
74 mulexp 13750 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
753, 50, 35, 74mp3an3an 1465 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7673, 75eqtrd 2778 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7776negeqd 11145 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7853, 67, 773eqtr4d 2788 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛))
7978oveq1d 7270 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
8044, 45, 793eqtr4d 2788 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛))
81 nnm1nn0 12204 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8281adantl 481 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
83 expcl 13728 . . . . . . 7 ((-1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ)
843, 82, 83sylancr 586 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
8584, 52, 39, 41div23d 11718 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
8680, 85eqtr2d 2779 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
87 oveq1 7262 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq2d 7271 . . . . . . . 8 (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1)))
8988, 29oveq12d 7273 . . . . . . 7 (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛))
90 oveq2 7263 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛))
9189, 90oveq12d 7273 . . . . . 6 (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
92 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))
93 ovex 7288 . . . . . 6 (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) ∈ V
9491, 92, 93fvmpt 6857 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9594adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9634oveq2d 7271 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
9786, 95, 963eqtr4d 2788 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)))
981, 2, 4, 27, 43, 97isermulc2 15297 . 2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴)))
996dvlog2lem 25712 . . . . . . . 8 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
10099sseli 3913 . . . . . . 7 (𝐴𝑆𝐴 ∈ (ℂ ∖ (-∞(,]0)))
101 eqid 2738 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
102101logdmn0 25700 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ≠ 0)
103100, 102syl 17 . . . . . 6 (𝐴𝑆𝐴 ≠ 0)
10413, 103logcld 25631 . . . . 5 (𝐴𝑆 → (log‘𝐴) ∈ ℂ)
105104negcld 11249 . . . 4 (𝐴𝑆 → -(log‘𝐴) ∈ ℂ)
106105mulm1d 11357 . . 3 (𝐴𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴))
107104negnegd 11253 . . 3 (𝐴𝑆 → --(log‘𝐴) = (log‘𝐴))
108106, 107eqtrd 2778 . 2 (𝐴𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴))
10998, 108breqtrd 5096 1 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880   class class class wbr 5070  cmpt 5153  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  -∞cmnf 10938  *cxr 10939   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  (,]cioc 13009  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  ∞Metcxmet 20495  ballcbl 20497  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617
This theorem is referenced by:  stirlinglem5  43509
  Copyright terms: Public domain W3C validator