Step | Hyp | Ref
| Expression |
1 | | nnuz 12621 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12351 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 1 ∈ ℤ) |
3 | | neg1cn 12087 |
. . . 4
⊢ -1 ∈
ℂ |
4 | 3 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑆 → -1 ∈ ℂ) |
5 | | ax-1cn 10929 |
. . . . . 6
⊢ 1 ∈
ℂ |
6 | | logtayl2.s |
. . . . . . . . 9
⊢ 𝑆 = (1(ball‘(abs ∘
− ))1) |
7 | 6 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ (1(ball‘(abs ∘ −
))1)) |
8 | | cnxmet 23936 |
. . . . . . . . 9
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
9 | | 1xr 11034 |
. . . . . . . . 9
⊢ 1 ∈
ℝ* |
10 | | elbl 23541 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ −
))1) ↔ (𝐴 ∈
ℂ ∧ (1(abs ∘ − )𝐴) < 1))) |
11 | 8, 5, 9, 10 | mp3an 1460 |
. . . . . . . 8
⊢ (𝐴 ∈ (1(ball‘(abs
∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ −
)𝐴) <
1)) |
12 | 7, 11 | bitri 274 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ −
)𝐴) <
1)) |
13 | 12 | simplbi 498 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ) |
14 | | subcl 11220 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
15 | 5, 13, 14 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (1 − 𝐴) ∈ ℂ) |
16 | | eqid 2738 |
. . . . . . . 8
⊢ (abs
∘ − ) = (abs ∘ − ) |
17 | 16 | cnmetdval 23934 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴))) |
18 | 5, 13, 17 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴))) |
19 | 12 | simprbi 497 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1(abs ∘ − )𝐴) < 1) |
20 | 18, 19 | eqbrtrrd 5098 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (abs‘(1 − 𝐴)) < 1) |
21 | | logtayl 25815 |
. . . . 5
⊢ (((1
− 𝐴) ∈ ℂ
∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 −
𝐴)))) |
22 | 15, 20, 21 | syl2anc 584 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 −
𝐴)))) |
23 | | nncan 11250 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴) |
24 | 5, 13, 23 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1 − (1 − 𝐴)) = 𝐴) |
25 | 24 | fveq2d 6778 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (log‘(1 − (1 −
𝐴))) = (log‘𝐴)) |
26 | 25 | negeqd 11215 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → -(log‘(1 − (1 −
𝐴))) = -(log‘𝐴)) |
27 | 22, 26 | breqtrd 5100 |
. . 3
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴)) |
28 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛)) |
29 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
30 | 28, 29 | oveq12d 7293 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
31 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) |
32 | | ovex 7308 |
. . . . . 6
⊢ (((1
− 𝐴)↑𝑛) / 𝑛) ∈ V |
33 | 30, 31, 32 | fvmpt 6875 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
34 | 33 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
35 | | nnnn0 12240 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
36 | | expcl 13800 |
. . . . . 6
⊢ (((1
− 𝐴) ∈ ℂ
∧ 𝑛 ∈
ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ) |
37 | 15, 35, 36 | syl2an 596 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ) |
38 | | nncn 11981 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
39 | 38 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
40 | | nnne0 12007 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
42 | 37, 39, 41 | divcld 11751 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ) |
43 | 34, 42 | eqeltrd 2839 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ) |
44 | 37, 39, 41 | divnegd 11764 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛)) |
45 | 42 | mulm1d 11427 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · (((1
− 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛)) |
46 | 35 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
47 | | expcl 13800 |
. . . . . . . . . 10
⊢ ((-1
∈ ℂ ∧ 𝑛
∈ ℕ0) → (-1↑𝑛) ∈ ℂ) |
48 | 3, 46, 47 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑𝑛) ∈
ℂ) |
49 | | subcl 11220 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
50 | 13, 5, 49 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → (𝐴 − 1) ∈ ℂ) |
51 | | expcl 13800 |
. . . . . . . . . 10
⊢ (((𝐴 − 1) ∈ ℂ ∧
𝑛 ∈
ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ) |
52 | 50, 35, 51 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ) |
53 | 48, 52 | mulneg1d 11428 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
54 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -1 ∈
ℂ) |
55 | | neg1ne0 12089 |
. . . . . . . . . . . 12
⊢ -1 ≠
0 |
56 | 55 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -1 ≠
0) |
57 | | nnz 12342 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
58 | 57 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
59 | 54, 56, 58 | expm1d 13874 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1)) |
60 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
61 | | ax-1ne0 10940 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
62 | 61 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 1 ≠
0) |
63 | 48, 60, 62 | divneg2d 11765 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1)) |
64 | 48 | div1d 11743 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛)) |
65 | 64 | negeqd 11215 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛)) |
66 | 59, 63, 65 | 3eqtr2d 2784 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛)) |
67 | 66 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
68 | 50 | mulm1d 11427 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1)) |
69 | | negsubdi2 11280 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝐴 −
1) = (1 − 𝐴)) |
70 | 13, 5, 69 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → -(𝐴 − 1) = (1 − 𝐴)) |
71 | 68, 70 | eqtr2d 2779 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1))) |
72 | 71 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛)) |
73 | 72 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛)) |
74 | | mulexp 13822 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ (𝐴
− 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1
· (𝐴 −
1))↑𝑛) =
((-1↑𝑛) ·
((𝐴 − 1)↑𝑛))) |
75 | 3, 50, 35, 74 | mp3an3an 1466 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
76 | 73, 75 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
77 | 76 | negeqd 11215 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
78 | 53, 67, 77 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛)) |
79 | 78 | oveq1d 7290 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛)) |
80 | 44, 45, 79 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · (((1
− 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛)) |
81 | | nnm1nn0 12274 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
82 | 81 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
ℕ0) |
83 | | expcl 13800 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ (𝑛
− 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ) |
84 | 3, 82, 83 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈
ℂ) |
85 | 84, 52, 39, 41 | div23d 11788 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
86 | 80, 85 | eqtr2d 2779 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛))) |
87 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1)) |
88 | 87 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1))) |
89 | 88, 29 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛)) |
90 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛)) |
91 | 89, 90 | oveq12d 7293 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
92 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦
(((-1↑(𝑘 − 1)) /
𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) |
93 | | ovex 7308 |
. . . . . 6
⊢
(((-1↑(𝑛
− 1)) / 𝑛) ·
((𝐴 − 1)↑𝑛)) ∈ V |
94 | 91, 92, 93 | fvmpt 6875 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(((-1↑(𝑘 − 1)) /
𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
95 | 94 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
96 | 34 | oveq2d 7291 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛))) |
97 | 86, 95, 96 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛))) |
98 | 1, 2, 4, 27, 43, 97 | isermulc2 15369 |
. 2
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴))) |
99 | 6 | dvlog2lem 25807 |
. . . . . . . 8
⊢ 𝑆 ⊆ (ℂ ∖
(-∞(,]0)) |
100 | 99 | sseli 3917 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (ℂ ∖
(-∞(,]0))) |
101 | | eqid 2738 |
. . . . . . . 8
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
102 | 101 | logdmn0 25795 |
. . . . . . 7
⊢ (𝐴 ∈ (ℂ ∖
(-∞(,]0)) → 𝐴
≠ 0) |
103 | 100, 102 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ≠ 0) |
104 | 13, 103 | logcld 25726 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (log‘𝐴) ∈ ℂ) |
105 | 104 | negcld 11319 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → -(log‘𝐴) ∈ ℂ) |
106 | 105 | mulm1d 11427 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴)) |
107 | 104 | negnegd 11323 |
. . 3
⊢ (𝐴 ∈ 𝑆 → --(log‘𝐴) = (log‘𝐴)) |
108 | 106, 107 | eqtrd 2778 |
. 2
⊢ (𝐴 ∈ 𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴)) |
109 | 98, 108 | breqtrd 5100 |
1
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴)) |