MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   GIF version

Theorem logtayl2 25352
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
logtayl2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem logtayl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12321 . . 3 ℕ = (ℤ‘1)
2 1zzd 12052 . . 3 (𝐴𝑆 → 1 ∈ ℤ)
3 neg1cn 11788 . . . 4 -1 ∈ ℂ
43a1i 11 . . 3 (𝐴𝑆 → -1 ∈ ℂ)
5 ax-1cn 10633 . . . . . 6 1 ∈ ℂ
6 logtayl2.s . . . . . . . . 9 𝑆 = (1(ball‘(abs ∘ − ))1)
76eleq2i 2843 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (1(ball‘(abs ∘ − ))1))
8 cnxmet 23474 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
9 1xr 10738 . . . . . . . . 9 1 ∈ ℝ*
10 elbl 23090 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1)))
118, 5, 9, 10mp3an 1458 . . . . . . . 8 (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
127, 11bitri 278 . . . . . . 7 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
1312simplbi 501 . . . . . 6 (𝐴𝑆𝐴 ∈ ℂ)
14 subcl 10923 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
155, 13, 14sylancr 590 . . . . 5 (𝐴𝑆 → (1 − 𝐴) ∈ ℂ)
16 eqid 2758 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 23472 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
185, 13, 17sylancr 590 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
1912simprbi 500 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) < 1)
2018, 19eqbrtrrd 5056 . . . . 5 (𝐴𝑆 → (abs‘(1 − 𝐴)) < 1)
21 logtayl 25350 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
2215, 20, 21syl2anc 587 . . . 4 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
23 nncan 10953 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
245, 13, 23sylancr 590 . . . . . 6 (𝐴𝑆 → (1 − (1 − 𝐴)) = 𝐴)
2524fveq2d 6662 . . . . 5 (𝐴𝑆 → (log‘(1 − (1 − 𝐴))) = (log‘𝐴))
2625negeqd 10918 . . . 4 (𝐴𝑆 → -(log‘(1 − (1 − 𝐴))) = -(log‘𝐴))
2722, 26breqtrd 5058 . . 3 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴))
28 oveq2 7158 . . . . . . 7 (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛))
29 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
3028, 29oveq12d 7168 . . . . . 6 (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛))
31 eqid 2758 . . . . . 6 (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))
32 ovex 7183 . . . . . 6 (((1 − 𝐴)↑𝑛) / 𝑛) ∈ V
3330, 31, 32fvmpt 6759 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
3433adantl 485 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
35 nnnn0 11941 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
36 expcl 13497 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
3715, 35, 36syl2an 598 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
38 nncn 11682 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3938adantl 485 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
40 nnne0 11708 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4140adantl 485 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ≠ 0)
4237, 39, 41divcld 11454 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ)
4334, 42eqeltrd 2852 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ)
4437, 39, 41divnegd 11467 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
4542mulm1d 11130 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛))
4635adantl 485 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 expcl 13497 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
483, 46, 47sylancr 590 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑𝑛) ∈ ℂ)
49 subcl 10923 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5013, 5, 49sylancl 589 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 − 1) ∈ ℂ)
51 expcl 13497 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5250, 35, 51syl2an 598 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5348, 52mulneg1d 11131 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
543a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ∈ ℂ)
55 neg1ne0 11790 . . . . . . . . . . . 12 -1 ≠ 0
5655a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ≠ 0)
57 nnz 12043 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5857adantl 485 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
5954, 56, 58expm1d 13570 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1))
605a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ∈ ℂ)
61 ax-1ne0 10644 . . . . . . . . . . . 12 1 ≠ 0
6261a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ≠ 0)
6348, 60, 62divneg2d 11468 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1))
6448div1d 11446 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛))
6564negeqd 10918 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛))
6659, 63, 653eqtr2d 2799 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛))
6766oveq1d 7165 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
6850mulm1d 11130 . . . . . . . . . . . . 13 (𝐴𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1))
69 negsubdi2 10983 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
7013, 5, 69sylancl 589 . . . . . . . . . . . . 13 (𝐴𝑆 → -(𝐴 − 1) = (1 − 𝐴))
7168, 70eqtr2d 2794 . . . . . . . . . . . 12 (𝐴𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1)))
7271oveq1d 7165 . . . . . . . . . . 11 (𝐴𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
7372adantr 484 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
74 mulexp 13518 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
753, 50, 35, 74mp3an3an 1464 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7673, 75eqtrd 2793 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7776negeqd 10918 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7853, 67, 773eqtr4d 2803 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛))
7978oveq1d 7165 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
8044, 45, 793eqtr4d 2803 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛))
81 nnm1nn0 11975 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8281adantl 485 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
83 expcl 13497 . . . . . . 7 ((-1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ)
843, 82, 83sylancr 590 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
8584, 52, 39, 41div23d 11491 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
8680, 85eqtr2d 2794 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
87 oveq1 7157 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq2d 7166 . . . . . . . 8 (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1)))
8988, 29oveq12d 7168 . . . . . . 7 (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛))
90 oveq2 7158 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛))
9189, 90oveq12d 7168 . . . . . 6 (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
92 eqid 2758 . . . . . 6 (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))
93 ovex 7183 . . . . . 6 (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) ∈ V
9491, 92, 93fvmpt 6759 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9594adantl 485 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9634oveq2d 7166 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
9786, 95, 963eqtr4d 2803 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)))
981, 2, 4, 27, 43, 97isermulc2 15062 . 2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴)))
996dvlog2lem 25342 . . . . . . . 8 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
10099sseli 3888 . . . . . . 7 (𝐴𝑆𝐴 ∈ (ℂ ∖ (-∞(,]0)))
101 eqid 2758 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
102101logdmn0 25330 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ≠ 0)
103100, 102syl 17 . . . . . 6 (𝐴𝑆𝐴 ≠ 0)
10413, 103logcld 25261 . . . . 5 (𝐴𝑆 → (log‘𝐴) ∈ ℂ)
105104negcld 11022 . . . 4 (𝐴𝑆 → -(log‘𝐴) ∈ ℂ)
106105mulm1d 11130 . . 3 (𝐴𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴))
107104negnegd 11026 . . 3 (𝐴𝑆 → --(log‘𝐴) = (log‘𝐴))
108106, 107eqtrd 2793 . 2 (𝐴𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴))
10998, 108breqtrd 5058 1 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  cdif 3855   class class class wbr 5032  cmpt 5112  ccom 5528  cfv 6335  (class class class)co 7150  cc 10573  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  -∞cmnf 10711  *cxr 10712   < clt 10713  cmin 10908  -cneg 10909   / cdiv 11335  cn 11674  0cn0 11934  cz 12020  (,]cioc 12780  seqcseq 13418  cexp 13479  abscabs 14641  cli 14889  ∞Metcxmet 20151  ballcbl 20153  logclog 25245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-tan 15473  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-ulm 25071  df-log 25247
This theorem is referenced by:  stirlinglem5  43086
  Copyright terms: Public domain W3C validator