MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   GIF version

Theorem logtayl2 25817
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
logtayl2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem logtayl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12621 . . 3 ℕ = (ℤ‘1)
2 1zzd 12351 . . 3 (𝐴𝑆 → 1 ∈ ℤ)
3 neg1cn 12087 . . . 4 -1 ∈ ℂ
43a1i 11 . . 3 (𝐴𝑆 → -1 ∈ ℂ)
5 ax-1cn 10929 . . . . . 6 1 ∈ ℂ
6 logtayl2.s . . . . . . . . 9 𝑆 = (1(ball‘(abs ∘ − ))1)
76eleq2i 2830 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (1(ball‘(abs ∘ − ))1))
8 cnxmet 23936 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
9 1xr 11034 . . . . . . . . 9 1 ∈ ℝ*
10 elbl 23541 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1)))
118, 5, 9, 10mp3an 1460 . . . . . . . 8 (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
127, 11bitri 274 . . . . . . 7 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
1312simplbi 498 . . . . . 6 (𝐴𝑆𝐴 ∈ ℂ)
14 subcl 11220 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
155, 13, 14sylancr 587 . . . . 5 (𝐴𝑆 → (1 − 𝐴) ∈ ℂ)
16 eqid 2738 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 23934 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
185, 13, 17sylancr 587 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
1912simprbi 497 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) < 1)
2018, 19eqbrtrrd 5098 . . . . 5 (𝐴𝑆 → (abs‘(1 − 𝐴)) < 1)
21 logtayl 25815 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
2215, 20, 21syl2anc 584 . . . 4 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
23 nncan 11250 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
245, 13, 23sylancr 587 . . . . . 6 (𝐴𝑆 → (1 − (1 − 𝐴)) = 𝐴)
2524fveq2d 6778 . . . . 5 (𝐴𝑆 → (log‘(1 − (1 − 𝐴))) = (log‘𝐴))
2625negeqd 11215 . . . 4 (𝐴𝑆 → -(log‘(1 − (1 − 𝐴))) = -(log‘𝐴))
2722, 26breqtrd 5100 . . 3 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴))
28 oveq2 7283 . . . . . . 7 (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛))
29 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
3028, 29oveq12d 7293 . . . . . 6 (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛))
31 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))
32 ovex 7308 . . . . . 6 (((1 − 𝐴)↑𝑛) / 𝑛) ∈ V
3330, 31, 32fvmpt 6875 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
3433adantl 482 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
35 nnnn0 12240 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
36 expcl 13800 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
3715, 35, 36syl2an 596 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
38 nncn 11981 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3938adantl 482 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
40 nnne0 12007 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4140adantl 482 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ≠ 0)
4237, 39, 41divcld 11751 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ)
4334, 42eqeltrd 2839 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ)
4437, 39, 41divnegd 11764 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
4542mulm1d 11427 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛))
4635adantl 482 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 expcl 13800 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
483, 46, 47sylancr 587 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑𝑛) ∈ ℂ)
49 subcl 11220 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5013, 5, 49sylancl 586 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 − 1) ∈ ℂ)
51 expcl 13800 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5250, 35, 51syl2an 596 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5348, 52mulneg1d 11428 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
543a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ∈ ℂ)
55 neg1ne0 12089 . . . . . . . . . . . 12 -1 ≠ 0
5655a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ≠ 0)
57 nnz 12342 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5857adantl 482 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
5954, 56, 58expm1d 13874 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1))
605a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ∈ ℂ)
61 ax-1ne0 10940 . . . . . . . . . . . 12 1 ≠ 0
6261a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ≠ 0)
6348, 60, 62divneg2d 11765 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1))
6448div1d 11743 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛))
6564negeqd 11215 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛))
6659, 63, 653eqtr2d 2784 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛))
6766oveq1d 7290 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
6850mulm1d 11427 . . . . . . . . . . . . 13 (𝐴𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1))
69 negsubdi2 11280 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
7013, 5, 69sylancl 586 . . . . . . . . . . . . 13 (𝐴𝑆 → -(𝐴 − 1) = (1 − 𝐴))
7168, 70eqtr2d 2779 . . . . . . . . . . . 12 (𝐴𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1)))
7271oveq1d 7290 . . . . . . . . . . 11 (𝐴𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
7372adantr 481 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
74 mulexp 13822 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
753, 50, 35, 74mp3an3an 1466 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7673, 75eqtrd 2778 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7776negeqd 11215 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7853, 67, 773eqtr4d 2788 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛))
7978oveq1d 7290 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
8044, 45, 793eqtr4d 2788 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛))
81 nnm1nn0 12274 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8281adantl 482 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
83 expcl 13800 . . . . . . 7 ((-1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ)
843, 82, 83sylancr 587 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
8584, 52, 39, 41div23d 11788 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
8680, 85eqtr2d 2779 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
87 oveq1 7282 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq2d 7291 . . . . . . . 8 (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1)))
8988, 29oveq12d 7293 . . . . . . 7 (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛))
90 oveq2 7283 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛))
9189, 90oveq12d 7293 . . . . . 6 (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
92 eqid 2738 . . . . . 6 (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))
93 ovex 7308 . . . . . 6 (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) ∈ V
9491, 92, 93fvmpt 6875 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9594adantl 482 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9634oveq2d 7291 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
9786, 95, 963eqtr4d 2788 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)))
981, 2, 4, 27, 43, 97isermulc2 15369 . 2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴)))
996dvlog2lem 25807 . . . . . . . 8 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
10099sseli 3917 . . . . . . 7 (𝐴𝑆𝐴 ∈ (ℂ ∖ (-∞(,]0)))
101 eqid 2738 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
102101logdmn0 25795 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ≠ 0)
103100, 102syl 17 . . . . . 6 (𝐴𝑆𝐴 ≠ 0)
10413, 103logcld 25726 . . . . 5 (𝐴𝑆 → (log‘𝐴) ∈ ℂ)
105104negcld 11319 . . . 4 (𝐴𝑆 → -(log‘𝐴) ∈ ℂ)
106105mulm1d 11427 . . 3 (𝐴𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴))
107104negnegd 11323 . . 3 (𝐴𝑆 → --(log‘𝐴) = (log‘𝐴))
108106, 107eqtrd 2778 . 2 (𝐴𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴))
10998, 108breqtrd 5100 1 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884   class class class wbr 5074  cmpt 5157  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  -∞cmnf 11007  *cxr 11008   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  (,]cioc 13080  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  ∞Metcxmet 20582  ballcbl 20584  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712
This theorem is referenced by:  stirlinglem5  43619
  Copyright terms: Public domain W3C validator