MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   GIF version

Theorem logtayl2 26591
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
logtayl2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem logtayl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12767 . . 3 ℕ = (ℤ‘1)
2 1zzd 12495 . . 3 (𝐴𝑆 → 1 ∈ ℤ)
3 neg1cn 12102 . . . 4 -1 ∈ ℂ
43a1i 11 . . 3 (𝐴𝑆 → -1 ∈ ℂ)
5 ax-1cn 11056 . . . . . 6 1 ∈ ℂ
6 logtayl2.s . . . . . . . . 9 𝑆 = (1(ball‘(abs ∘ − ))1)
76eleq2i 2821 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (1(ball‘(abs ∘ − ))1))
8 cnxmet 24680 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
9 1xr 11163 . . . . . . . . 9 1 ∈ ℝ*
10 elbl 24296 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1)))
118, 5, 9, 10mp3an 1463 . . . . . . . 8 (𝐴 ∈ (1(ball‘(abs ∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
127, 11bitri 275 . . . . . . 7 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ − )𝐴) < 1))
1312simplbi 497 . . . . . 6 (𝐴𝑆𝐴 ∈ ℂ)
14 subcl 11351 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
155, 13, 14sylancr 587 . . . . 5 (𝐴𝑆 → (1 − 𝐴) ∈ ℂ)
16 eqid 2730 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
1716cnmetdval 24678 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
185, 13, 17sylancr 587 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴)))
1912simprbi 496 . . . . . 6 (𝐴𝑆 → (1(abs ∘ − )𝐴) < 1)
2018, 19eqbrtrrd 5113 . . . . 5 (𝐴𝑆 → (abs‘(1 − 𝐴)) < 1)
21 logtayl 26589 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
2215, 20, 21syl2anc 584 . . . 4 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 − 𝐴))))
23 nncan 11382 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
245, 13, 23sylancr 587 . . . . . 6 (𝐴𝑆 → (1 − (1 − 𝐴)) = 𝐴)
2524fveq2d 6821 . . . . 5 (𝐴𝑆 → (log‘(1 − (1 − 𝐴))) = (log‘𝐴))
2625negeqd 11346 . . . 4 (𝐴𝑆 → -(log‘(1 − (1 − 𝐴))) = -(log‘𝐴))
2722, 26breqtrd 5115 . . 3 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴))
28 oveq2 7349 . . . . . . 7 (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛))
29 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
3028, 29oveq12d 7359 . . . . . 6 (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛))
31 eqid 2730 . . . . . 6 (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))
32 ovex 7374 . . . . . 6 (((1 − 𝐴)↑𝑛) / 𝑛) ∈ V
3330, 31, 32fvmpt 6924 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
3433adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛))
35 nnnn0 12380 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
36 expcl 13978 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
3715, 35, 36syl2an 596 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ)
38 nncn 12125 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3938adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
40 nnne0 12151 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4140adantl 481 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ≠ 0)
4237, 39, 41divcld 11889 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ)
4334, 42eqeltrd 2829 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ)
4437, 39, 41divnegd 11902 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
4542mulm1d 11561 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛))
4635adantl 481 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 expcl 13978 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℂ)
483, 46, 47sylancr 587 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑𝑛) ∈ ℂ)
49 subcl 11351 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5013, 5, 49sylancl 586 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 − 1) ∈ ℂ)
51 expcl 13978 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5250, 35, 51syl2an 596 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ)
5348, 52mulneg1d 11562 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
543a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ∈ ℂ)
55 neg1ne0 12104 . . . . . . . . . . . 12 -1 ≠ 0
5655a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → -1 ≠ 0)
57 nnz 12481 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5857adantl 481 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
5954, 56, 58expm1d 14055 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1))
605a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ∈ ℂ)
61 ax-1ne0 11067 . . . . . . . . . . . 12 1 ≠ 0
6261a1i 11 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → 1 ≠ 0)
6348, 60, 62divneg2d 11903 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1))
6448div1d 11881 . . . . . . . . . . 11 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛))
6564negeqd 11346 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛))
6659, 63, 653eqtr2d 2771 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛))
6766oveq1d 7356 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
6850mulm1d 11561 . . . . . . . . . . . . 13 (𝐴𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1))
69 negsubdi2 11412 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
7013, 5, 69sylancl 586 . . . . . . . . . . . . 13 (𝐴𝑆 → -(𝐴 − 1) = (1 − 𝐴))
7168, 70eqtr2d 2766 . . . . . . . . . . . 12 (𝐴𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1)))
7271oveq1d 7356 . . . . . . . . . . 11 (𝐴𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
7372adantr 480 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛))
74 mulexp 14000 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
753, 50, 35, 74mp3an3an 1469 . . . . . . . . . 10 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7673, 75eqtrd 2765 . . . . . . . . 9 ((𝐴𝑆𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7776negeqd 11346 . . . . . . . 8 ((𝐴𝑆𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛)))
7853, 67, 773eqtr4d 2775 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛))
7978oveq1d 7356 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛))
8044, 45, 793eqtr4d 2775 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛))
81 nnm1nn0 12414 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8281adantl 481 . . . . . . 7 ((𝐴𝑆𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
83 expcl 13978 . . . . . . 7 ((-1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ)
843, 82, 83sylancr 587 . . . . . 6 ((𝐴𝑆𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
8584, 52, 39, 41div23d 11926 . . . . 5 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
8680, 85eqtr2d 2766 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
87 oveq1 7348 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq2d 7357 . . . . . . . 8 (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1)))
8988, 29oveq12d 7359 . . . . . . 7 (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛))
90 oveq2 7349 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛))
9189, 90oveq12d 7359 . . . . . 6 (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
92 eqid 2730 . . . . . 6 (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))
93 ovex 7374 . . . . . 6 (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) ∈ V
9491, 92, 93fvmpt 6924 . . . . 5 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9594adantl 481 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)))
9634oveq2d 7357 . . . 4 ((𝐴𝑆𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛)))
9786, 95, 963eqtr4d 2775 . . 3 ((𝐴𝑆𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛)))
981, 2, 4, 27, 43, 97isermulc2 15557 . 2 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴)))
996dvlog2lem 26581 . . . . . . . 8 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
10099sseli 3928 . . . . . . 7 (𝐴𝑆𝐴 ∈ (ℂ ∖ (-∞(,]0)))
101 eqid 2730 . . . . . . . 8 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
102101logdmn0 26569 . . . . . . 7 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ≠ 0)
103100, 102syl 17 . . . . . 6 (𝐴𝑆𝐴 ≠ 0)
10413, 103logcld 26499 . . . . 5 (𝐴𝑆 → (log‘𝐴) ∈ ℂ)
105104negcld 11451 . . . 4 (𝐴𝑆 → -(log‘𝐴) ∈ ℂ)
106105mulm1d 11561 . . 3 (𝐴𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴))
107104negnegd 11455 . . 3 (𝐴𝑆 → --(log‘𝐴) = (log‘𝐴))
108106, 107eqtrd 2765 . 2 (𝐴𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴))
10998, 108breqtrd 5115 1 (𝐴𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  cdif 3897   class class class wbr 5089  cmpt 5170  ccom 5618  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  -∞cmnf 11136  *cxr 11137   < clt 11138  cmin 11336  -cneg 11337   / cdiv 11766  cn 12117  0cn0 12373  cz 12460  (,]cioc 13238  seqcseq 13900  cexp 13960  abscabs 15133  cli 15383  ∞Metcxmet 21269  ballcbl 21271  logclog 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-tan 15970  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-ulm 26306  df-log 26485
This theorem is referenced by:  stirlinglem5  46095
  Copyright terms: Public domain W3C validator