Step | Hyp | Ref
| Expression |
1 | | infpn2.1 |
. . 3
⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
2 | 1 | ssrab3 4015 |
. 2
⊢ 𝑆 ⊆
ℕ |
3 | | infpn 16613 |
. . . . 5
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
4 | | nnge1 12001 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
5 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → 1 ≤
𝑗) |
6 | | 1re 10975 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
7 | | nnre 11980 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
8 | | nnre 11980 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
9 | | lelttr 11065 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑗
∈ ℝ ∧ 𝑘
∈ ℝ) → ((1 ≤ 𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘)) |
10 | 6, 7, 8, 9 | mp3an3an 1466 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((1 ≤
𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘)) |
11 | 5, 10 | mpand 692 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → 1 < 𝑘)) |
12 | 11 | ancld 551 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → (𝑗 < 𝑘 ∧ 1 < 𝑘))) |
13 | 12 | anim1d 611 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
14 | | anass 469 |
. . . . . . 7
⊢ (((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
15 | 13, 14 | syl6ib 250 |
. . . . . 6
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
16 | 15 | reximdva 3203 |
. . . . 5
⊢ (𝑗 ∈ ℕ →
(∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
17 | 3, 16 | mpd 15 |
. . . 4
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
18 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (1 < 𝑛 ↔ 1 < 𝑘)) |
19 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑛 / 𝑚) = (𝑘 / 𝑚)) |
20 | 19 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑘 / 𝑚) ∈ ℕ)) |
21 | | equequ2 2029 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑘)) |
22 | 21 | orbi2d 913 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑘))) |
23 | 20, 22 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
24 | 23 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
25 | 18, 24 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
26 | 25, 1 | elrab2 3627 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑆 ↔ (𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
27 | 26 | anbi1i 624 |
. . . . . 6
⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ ((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘)) |
28 | | anass 469 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ (1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘))) |
29 | | ancom 461 |
. . . . . . 7
⊢ (((1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
30 | 29 | anbi2i 623 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ ((1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
31 | 27, 28, 30 | 3bitri 297 |
. . . . 5
⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
32 | 31 | rexbii2 3179 |
. . . 4
⊢
(∃𝑘 ∈
𝑆 𝑗 < 𝑘 ↔ ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
33 | 17, 32 | sylibr 233 |
. . 3
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ 𝑆 𝑗 < 𝑘) |
34 | 33 | rgen 3074 |
. 2
⊢
∀𝑗 ∈
ℕ ∃𝑘 ∈
𝑆 𝑗 < 𝑘 |
35 | | unben 16610 |
. 2
⊢ ((𝑆 ⊆ ℕ ∧
∀𝑗 ∈ ℕ
∃𝑘 ∈ 𝑆 𝑗 < 𝑘) → 𝑆 ≈ ℕ) |
36 | 2, 34, 35 | mp2an 689 |
1
⊢ 𝑆 ≈
ℕ |