| Step | Hyp | Ref
| Expression |
| 1 | | infpn2.1 |
. . 3
⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} |
| 2 | 1 | ssrab3 4082 |
. 2
⊢ 𝑆 ⊆
ℕ |
| 3 | | infpn 16950 |
. . . . 5
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
| 4 | | nnge1 12294 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
| 5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → 1 ≤
𝑗) |
| 6 | | 1re 11261 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 7 | | nnre 12273 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
| 8 | | nnre 12273 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 9 | | lelttr 11351 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑗
∈ ℝ ∧ 𝑘
∈ ℝ) → ((1 ≤ 𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘)) |
| 10 | 6, 7, 8, 9 | mp3an3an 1469 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((1 ≤
𝑗 ∧ 𝑗 < 𝑘) → 1 < 𝑘)) |
| 11 | 5, 10 | mpand 695 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → 1 < 𝑘)) |
| 12 | 11 | ancld 550 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → (𝑗 < 𝑘 ∧ 1 < 𝑘))) |
| 13 | 12 | anim1d 611 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 14 | | anass 468 |
. . . . . . 7
⊢ (((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 15 | 13, 14 | imbitrdi 251 |
. . . . . 6
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
| 16 | 15 | reximdva 3168 |
. . . . 5
⊢ (𝑗 ∈ ℕ →
(∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
| 17 | 3, 16 | mpd 15 |
. . . 4
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ ℕ
(𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 18 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (1 < 𝑛 ↔ 1 < 𝑘)) |
| 19 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑛 / 𝑚) = (𝑘 / 𝑚)) |
| 20 | 19 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑘 / 𝑚) ∈ ℕ)) |
| 21 | | equequ2 2025 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑚 = 𝑛 ↔ 𝑚 = 𝑘)) |
| 22 | 21 | orbi2d 916 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑘))) |
| 23 | 20, 22 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
| 24 | 23 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) |
| 25 | 18, 24 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 26 | 25, 1 | elrab2 3695 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑆 ↔ (𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 27 | 26 | anbi1i 624 |
. . . . . 6
⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ ((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘)) |
| 28 | | anass 468 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ (1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘))) |
| 29 | | ancom 460 |
. . . . . . 7
⊢ (((1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 30 | 29 | anbi2i 623 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ ((1 <
𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
| 31 | 27, 28, 30 | 3bitri 297 |
. . . . 5
⊢ ((𝑘 ∈ 𝑆 ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))) |
| 32 | 31 | rexbii2 3090 |
. . . 4
⊢
(∃𝑘 ∈
𝑆 𝑗 < 𝑘 ↔ ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))) |
| 33 | 17, 32 | sylibr 234 |
. . 3
⊢ (𝑗 ∈ ℕ →
∃𝑘 ∈ 𝑆 𝑗 < 𝑘) |
| 34 | 33 | rgen 3063 |
. 2
⊢
∀𝑗 ∈
ℕ ∃𝑘 ∈
𝑆 𝑗 < 𝑘 |
| 35 | | unben 16947 |
. 2
⊢ ((𝑆 ⊆ ℕ ∧
∀𝑗 ∈ ℕ
∃𝑘 ∈ 𝑆 𝑗 < 𝑘) → 𝑆 ≈ ℕ) |
| 36 | 2, 34, 35 | mp2an 692 |
1
⊢ 𝑆 ≈
ℕ |