MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpn2 Structured version   Visualization version   GIF version

Theorem infpn2 16243
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 16242, so by unben 16239 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
Assertion
Ref Expression
infpn2 𝑆 ≈ ℕ
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝑆(𝑚,𝑛)

Proof of Theorem infpn2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpn2.1 . . 3 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
21ssrab3 4057 . 2 𝑆 ⊆ ℕ
3 infpn 16242 . . . . 5 (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
4 nnge1 11659 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
54adantr 483 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑗)
6 1re 10635 . . . . . . . . . . 11 1 ∈ ℝ
7 nnre 11639 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
8 nnre 11639 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
9 lelttr 10725 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑗𝑗 < 𝑘) → 1 < 𝑘))
106, 7, 8, 9mp3an3an 1463 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((1 ≤ 𝑗𝑗 < 𝑘) → 1 < 𝑘))
115, 10mpand 693 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → 1 < 𝑘))
1211ancld 553 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → (𝑗 < 𝑘 ∧ 1 < 𝑘)))
1312anim1d 612 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
14 anass 471 . . . . . . 7 (((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
1513, 14syl6ib 253 . . . . . 6 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
1615reximdva 3274 . . . . 5 (𝑗 ∈ ℕ → (∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
173, 16mpd 15 . . . 4 (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
18 breq2 5063 . . . . . . . . 9 (𝑛 = 𝑘 → (1 < 𝑛 ↔ 1 < 𝑘))
19 oveq1 7157 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑛 / 𝑚) = (𝑘 / 𝑚))
2019eleq1d 2897 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑘 / 𝑚) ∈ ℕ))
21 equequ2 2029 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑚 = 𝑛𝑚 = 𝑘))
2221orbi2d 912 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑘)))
2320, 22imbi12d 347 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
2423ralbidv 3197 . . . . . . . . 9 (𝑛 = 𝑘 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
2518, 24anbi12d 632 . . . . . . . 8 (𝑛 = 𝑘 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
2625, 1elrab2 3683 . . . . . . 7 (𝑘𝑆 ↔ (𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
2726anbi1i 625 . . . . . 6 ((𝑘𝑆𝑗 < 𝑘) ↔ ((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘))
28 anass 471 . . . . . 6 (((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)))
29 ancom 463 . . . . . . 7 (((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
3029anbi2i 624 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
3127, 28, 303bitri 299 . . . . 5 ((𝑘𝑆𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
3231rexbii2 3245 . . . 4 (∃𝑘𝑆 𝑗 < 𝑘 ↔ ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
3317, 32sylibr 236 . . 3 (𝑗 ∈ ℕ → ∃𝑘𝑆 𝑗 < 𝑘)
3433rgen 3148 . 2 𝑗 ∈ ℕ ∃𝑘𝑆 𝑗 < 𝑘
35 unben 16239 . 2 ((𝑆 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ ∃𝑘𝑆 𝑗 < 𝑘) → 𝑆 ≈ ℕ)
362, 34, 35mp2an 690 1 𝑆 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  wss 3936   class class class wbr 5059  (class class class)co 7150  cen 8500  cr 10530  1c1 10532   < clt 10669  cle 10670   / cdiv 11291  cn 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-fac 13628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator