MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpn2 Structured version   Visualization version   GIF version

Theorem infpn2 16951
Description: There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 16950, so by unben 16947 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
Assertion
Ref Expression
infpn2 𝑆 ≈ ℕ
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝑆(𝑚,𝑛)

Proof of Theorem infpn2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpn2.1 . . 3 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}
21ssrab3 4082 . 2 𝑆 ⊆ ℕ
3 infpn 16950 . . . . 5 (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
4 nnge1 12294 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
54adantr 480 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑗)
6 1re 11261 . . . . . . . . . . 11 1 ∈ ℝ
7 nnre 12273 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
8 nnre 12273 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
9 lelttr 11351 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑗𝑗 < 𝑘) → 1 < 𝑘))
106, 7, 8, 9mp3an3an 1469 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((1 ≤ 𝑗𝑗 < 𝑘) → 1 < 𝑘))
115, 10mpand 695 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → 1 < 𝑘))
1211ancld 550 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑗 < 𝑘 → (𝑗 < 𝑘 ∧ 1 < 𝑘)))
1312anim1d 611 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
14 anass 468 . . . . . . 7 (((𝑗 < 𝑘 ∧ 1 < 𝑘) ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
1513, 14imbitrdi 251 . . . . . 6 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
1615reximdva 3168 . . . . 5 (𝑗 ∈ ℕ → (∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
173, 16mpd 15 . . . 4 (𝑗 ∈ ℕ → ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
18 breq2 5147 . . . . . . . . 9 (𝑛 = 𝑘 → (1 < 𝑛 ↔ 1 < 𝑘))
19 oveq1 7438 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑛 / 𝑚) = (𝑘 / 𝑚))
2019eleq1d 2826 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝑛 / 𝑚) ∈ ℕ ↔ (𝑘 / 𝑚) ∈ ℕ))
21 equequ2 2025 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑚 = 𝑛𝑚 = 𝑘))
2221orbi2d 916 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝑚 = 1 ∨ 𝑚 = 𝑛) ↔ (𝑚 = 1 ∨ 𝑚 = 𝑘)))
2320, 22imbi12d 344 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
2423ralbidv 3178 . . . . . . . . 9 (𝑛 = 𝑘 → (∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))
2518, 24anbi12d 632 . . . . . . . 8 (𝑛 = 𝑘 → ((1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛))) ↔ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
2625, 1elrab2 3695 . . . . . . 7 (𝑘𝑆 ↔ (𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
2726anbi1i 624 . . . . . 6 ((𝑘𝑆𝑗 < 𝑘) ↔ ((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘))
28 anass 468 . . . . . 6 (((𝑘 ∈ ℕ ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))) ∧ 𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)))
29 ancom 460 . . . . . . 7 (((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘) ↔ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
3029anbi2i 623 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))) ∧ 𝑗 < 𝑘)) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
3127, 28, 303bitri 297 . . . . 5 ((𝑘𝑆𝑗 < 𝑘) ↔ (𝑘 ∈ ℕ ∧ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘))))))
3231rexbii2 3090 . . . 4 (∃𝑘𝑆 𝑗 < 𝑘 ↔ ∃𝑘 ∈ ℕ (𝑗 < 𝑘 ∧ (1 < 𝑘 ∧ ∀𝑚 ∈ ℕ ((𝑘 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑘)))))
3317, 32sylibr 234 . . 3 (𝑗 ∈ ℕ → ∃𝑘𝑆 𝑗 < 𝑘)
3433rgen 3063 . 2 𝑗 ∈ ℕ ∃𝑘𝑆 𝑗 < 𝑘
35 unben 16947 . 2 ((𝑆 ⊆ ℕ ∧ ∀𝑗 ∈ ℕ ∃𝑘𝑆 𝑗 < 𝑘) → 𝑆 ≈ ℕ)
362, 34, 35mp2an 692 1 𝑆 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951   class class class wbr 5143  (class class class)co 7431  cen 8982  cr 11154  1c1 11156   < clt 11295  cle 11296   / cdiv 11920  cn 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-fac 14313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator