Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulre Structured version   Visualization version   GIF version

Theorem mulre 14541
 Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
mulre ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))

Proof of Theorem mulre
StepHypRef Expression
1 rereb 14540 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
213ad2ant1 1130 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
3 recl 14530 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 10720 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
543ad2ant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
6 simp1 1133 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
7 recn 10678 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87anim1i 617 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
983adant1 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10 mulcan 11328 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
115, 6, 9, 10syl3anc 1368 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
127adantr 484 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
134adantl 485 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
14 ax-icn 10647 . . . . . . . . . . . 12 i ∈ ℂ
15 imcl 14531 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1615recnd 10720 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
17 mulcl 10672 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1814, 16, 17sylancr 590 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
1918adantl 485 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 13, 19adddid 10716 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
21 replim 14536 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2221adantl 485 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2322oveq2d 7172 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
24 mul12 10856 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2514, 7, 16, 24mp3an3an 1464 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2625oveq2d 7172 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
2720, 23, 263eqtr4d 2803 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))))
2827fveq2d 6667 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐵 · 𝐴)) = (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))))
29 remulcl 10673 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
303, 29sylan2 595 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
31 remulcl 10673 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
3215, 31sylan2 595 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
33 crre 14534 . . . . . . . 8 (((𝐵 · (ℜ‘𝐴)) ∈ ℝ ∧ (𝐵 · (ℑ‘𝐴)) ∈ ℝ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3430, 32, 33syl2anc 587 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3528, 34eqtr2d 2794 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) = (ℜ‘(𝐵 · 𝐴)))
3635eqeq1d 2760 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
37 mulcl 10672 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
387, 37sylan 583 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
39 rereb 14540 . . . . . 6 ((𝐵 · 𝐴) ∈ ℂ → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4038, 39syl 17 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4136, 40bitr4d 285 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
4241ancoms 462 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
43423adant3 1129 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
442, 11, 433bitr2d 310 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ‘cfv 6340  (class class class)co 7156  ℂcc 10586  ℝcr 10587  0cc0 10588  ici 10590   + caddc 10591   · cmul 10593  ℜcre 14517  ℑcim 14518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-2 11750  df-cj 14519  df-re 14520  df-im 14521 This theorem is referenced by:  sineq0  25228  sineq0ALT  42051  recnmulnred  44279
 Copyright terms: Public domain W3C validator