Step | Hyp | Ref
| Expression |
1 | | plyssc 25948 |
. . . . 5
β’
(Polyβπ)
β (Polyββ) |
2 | | simpl 481 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β πΉ β (Polyβπ)) |
3 | 1, 2 | sselid 3981 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β πΉ β
(Polyββ)) |
4 | | ssid 4005 |
. . . . . 6
β’ β
β β |
5 | | neg1cn 12332 |
. . . . . 6
β’ -1 β
β |
6 | | plyconst 25954 |
. . . . . 6
β’ ((β
β β β§ -1 β β) β (β Γ {-1}) β
(Polyββ)) |
7 | 4, 5, 6 | mp2an 688 |
. . . . 5
β’ (β
Γ {-1}) β (Polyββ) |
8 | | simpr 483 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β πΊ β (Polyβπ)) |
9 | 1, 8 | sselid 3981 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β πΊ β
(Polyββ)) |
10 | | plymulcl 25969 |
. . . . 5
β’
(((β Γ {-1}) β (Polyββ) β§ πΊ β (Polyββ))
β ((β Γ {-1}) βf Β· πΊ) β
(Polyββ)) |
11 | 7, 9, 10 | sylancr 585 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β ((β Γ {-1})
βf Β· πΊ) β
(Polyββ)) |
12 | | coesub.1 |
. . . . 5
β’ π΄ = (coeffβπΉ) |
13 | | eqid 2730 |
. . . . 5
β’
(coeffβ((β Γ {-1}) βf Β· πΊ)) = (coeffβ((β
Γ {-1}) βf Β· πΊ)) |
14 | 12, 13 | coeadd 25999 |
. . . 4
β’ ((πΉ β (Polyββ)
β§ ((β Γ {-1}) βf Β· πΊ) β (Polyββ)) β
(coeffβ(πΉ
βf + ((β Γ {-1}) βf Β·
πΊ))) = (π΄ βf +
(coeffβ((β Γ {-1}) βf Β· πΊ)))) |
15 | 3, 11, 14 | syl2anc 582 |
. . 3
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf + ((β Γ
{-1}) βf Β· πΊ))) = (π΄ βf +
(coeffβ((β Γ {-1}) βf Β· πΊ)))) |
16 | | coemulc 26003 |
. . . . . 6
β’ ((-1
β β β§ πΊ
β (Polyββ)) β (coeffβ((β Γ {-1})
βf Β· πΊ)) = ((β0 Γ {-1})
βf Β· (coeffβπΊ))) |
17 | 5, 9, 16 | sylancr 585 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ((β Γ
{-1}) βf Β· πΊ)) = ((β0 Γ {-1})
βf Β· (coeffβπΊ))) |
18 | | coesub.2 |
. . . . . 6
β’ π΅ = (coeffβπΊ) |
19 | 18 | oveq2i 7424 |
. . . . 5
β’
((β0 Γ {-1}) βf Β· π΅) = ((β0
Γ {-1}) βf Β· (coeffβπΊ)) |
20 | 17, 19 | eqtr4di 2788 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ((β Γ
{-1}) βf Β· πΊ)) = ((β0 Γ {-1})
βf Β· π΅)) |
21 | 20 | oveq2d 7429 |
. . 3
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (π΄ βf +
(coeffβ((β Γ {-1}) βf Β· πΊ))) = (π΄ βf + ((β0
Γ {-1}) βf Β· π΅))) |
22 | 15, 21 | eqtrd 2770 |
. 2
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf + ((β Γ
{-1}) βf Β· πΊ))) = (π΄ βf + ((β0
Γ {-1}) βf Β· π΅))) |
23 | | cnex 11195 |
. . . 4
β’ β
β V |
24 | | plyf 25946 |
. . . 4
β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) |
25 | | plyf 25946 |
. . . 4
β’ (πΊ β (Polyβπ) β πΊ:ββΆβ) |
26 | | ofnegsub 12216 |
. . . 4
β’ ((β
β V β§ πΉ:ββΆβ β§ πΊ:ββΆβ) β
(πΉ βf +
((β Γ {-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) |
27 | 23, 24, 25, 26 | mp3an3an 1465 |
. . 3
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (πΉ βf + ((β Γ
{-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) |
28 | 27 | fveq2d 6896 |
. 2
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf + ((β Γ
{-1}) βf Β· πΊ))) = (coeffβ(πΉ βf β πΊ))) |
29 | | nn0ex 12484 |
. . 3
β’
β0 β V |
30 | 12 | coef3 25980 |
. . 3
β’ (πΉ β (Polyβπ) β π΄:β0βΆβ) |
31 | 18 | coef3 25980 |
. . 3
β’ (πΊ β (Polyβπ) β π΅:β0βΆβ) |
32 | | ofnegsub 12216 |
. . 3
β’
((β0 β V β§ π΄:β0βΆβ β§
π΅:β0βΆβ) β
(π΄ βf +
((β0 Γ {-1}) βf Β· π΅)) = (π΄ βf β π΅)) |
33 | 29, 30, 31, 32 | mp3an3an 1465 |
. 2
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (π΄ βf + ((β0
Γ {-1}) βf Β· π΅)) = (π΄ βf β π΅)) |
34 | 22, 28, 33 | 3eqtr3d 2778 |
1
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf β πΊ)) = (π΄ βf β π΅)) |