MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coesub Structured version   Visualization version   GIF version

Theorem coesub 26178
Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coesub.1 𝐴 = (coeff‘𝐹)
coesub.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coesub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))

Proof of Theorem coesub
StepHypRef Expression
1 plyssc 26121 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3935 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ))
4 ssid 3960 . . . . . 6 ℂ ⊆ ℂ
5 neg1cn 12131 . . . . . 6 -1 ∈ ℂ
6 plyconst 26127 . . . . . 6 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
74, 5, 6mp2an 692 . . . . 5 (ℂ × {-1}) ∈ (Poly‘ℂ)
8 simpr 484 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
91, 8sselid 3935 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ))
10 plymulcl 26142 . . . . 5 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
117, 9, 10sylancr 587 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
12 coesub.1 . . . . 5 𝐴 = (coeff‘𝐹)
13 eqid 2729 . . . . 5 (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺))
1412, 13coeadd 26172 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
153, 11, 14syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
16 coemulc 26176 . . . . . 6 ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
175, 9, 16sylancr 587 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
18 coesub.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1918oveq2i 7364 . . . . 5 ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))
2017, 19eqtr4di 2782 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵))
2120oveq2d 7369 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
2215, 21eqtrd 2764 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
23 cnex 11109 . . . 4 ℂ ∈ V
24 plyf 26119 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
25 plyf 26119 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
26 ofnegsub 12144 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2723, 24, 25, 26mp3an3an 1469 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2827fveq2d 6830 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹f𝐺)))
29 nn0ex 12408 . . 3 0 ∈ V
3012coef3 26153 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
3118coef3 26153 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
32 ofnegsub 12144 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3329, 30, 31, 32mp3an3an 1469 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3422, 28, 333eqtr3d 2772 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  {csn 4579   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366  0cn0 12402  Polycply 26105  coeffccoe 26107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  dgrcolem2  26196  plydivlem4  26220  plydiveu  26222  vieta1lem2  26235  dgrsub2  43111
  Copyright terms: Public domain W3C validator