Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coesub Structured version   Visualization version   GIF version

Theorem coesub 24943
 Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coesub.1 𝐴 = (coeff‘𝐹)
coesub.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coesub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))

Proof of Theorem coesub
StepHypRef Expression
1 plyssc 24886 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 487 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
31, 2sseldi 3891 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ))
4 ssid 3915 . . . . . 6 ℂ ⊆ ℂ
5 neg1cn 11778 . . . . . 6 -1 ∈ ℂ
6 plyconst 24892 . . . . . 6 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
74, 5, 6mp2an 692 . . . . 5 (ℂ × {-1}) ∈ (Poly‘ℂ)
8 simpr 489 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
91, 8sseldi 3891 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ))
10 plymulcl 24907 . . . . 5 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
117, 9, 10sylancr 591 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
12 coesub.1 . . . . 5 𝐴 = (coeff‘𝐹)
13 eqid 2759 . . . . 5 (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺))
1412, 13coeadd 24937 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
153, 11, 14syl2anc 588 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
16 coemulc 24941 . . . . . 6 ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
175, 9, 16sylancr 591 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
18 coesub.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1918oveq2i 7159 . . . . 5 ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))
2017, 19eqtr4di 2812 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵))
2120oveq2d 7164 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
2215, 21eqtrd 2794 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
23 cnex 10646 . . . 4 ℂ ∈ V
24 plyf 24884 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
25 plyf 24884 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
26 ofnegsub 11662 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2723, 24, 25, 26mp3an3an 1465 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2827fveq2d 6660 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹f𝐺)))
29 nn0ex 11930 . . 3 0 ∈ V
3012coef3 24918 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
3118coef3 24918 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
32 ofnegsub 11662 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3329, 30, 31, 32mp3an3an 1465 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3422, 28, 333eqtr3d 2802 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  Vcvv 3410   ⊆ wss 3859  {csn 4520   × cxp 5520  ⟶wf 6329  ‘cfv 6333  (class class class)co 7148   ∘f cof 7401  ℂcc 10563  1c1 10566   + caddc 10568   · cmul 10570   − cmin 10898  -cneg 10899  ℕ0cn0 11924  Polycply 24870  coeffccoe 24872 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-addf 10644 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-n0 11925  df-z 12011  df-uz 12273  df-rp 12421  df-fz 12930  df-fzo 13073  df-fl 13201  df-seq 13409  df-exp 13470  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-clim 14883  df-rlim 14884  df-sum 15081  df-0p 24360  df-ply 24874  df-coe 24876  df-dgr 24877 This theorem is referenced by:  dgrcolem2  24960  plydivlem4  24981  plydiveu  24983  vieta1lem2  24996  dgrsub2  40442
 Copyright terms: Public domain W3C validator