Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version |
Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 24886 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | simpl 487 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
3 | 1, 2 | sseldi 3891 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) |
4 | ssid 3915 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
5 | neg1cn 11778 | . . . . . 6 ⊢ -1 ∈ ℂ | |
6 | plyconst 24892 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
8 | simpr 489 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
9 | 1, 8 | sseldi 3891 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) |
10 | plymulcl 24907 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
11 | 7, 9, 10 | sylancr 591 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
13 | eqid 2759 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺)) | |
14 | 12, 13 | coeadd 24937 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
15 | 3, 11, 14 | syl2anc 588 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
16 | coemulc 24941 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | |
17 | 5, 9, 16 | sylancr 591 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) |
18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
19 | 18 | oveq2i 7159 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)) |
20 | 17, 19 | eqtr4di 2812 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵)) |
21 | 20 | oveq2d 7164 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
22 | 15, 21 | eqtrd 2794 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
23 | cnex 10646 | . . . 4 ⊢ ℂ ∈ V | |
24 | plyf 24884 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
25 | plyf 24884 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
26 | ofnegsub 11662 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
27 | 23, 24, 25, 26 | mp3an3an 1465 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
28 | 27 | fveq2d 6660 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹 ∘f − 𝐺))) |
29 | nn0ex 11930 | . . 3 ⊢ ℕ0 ∈ V | |
30 | 12 | coef3 24918 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
31 | 18 | coef3 24918 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
32 | ofnegsub 11662 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | |
33 | 29, 30, 31, 32 | mp3an3an 1465 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) |
34 | 22, 28, 33 | 3eqtr3d 2802 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 {csn 4520 × cxp 5520 ⟶wf 6329 ‘cfv 6333 (class class class)co 7148 ∘f cof 7401 ℂcc 10563 1c1 10566 + caddc 10568 · cmul 10570 − cmin 10898 -cneg 10899 ℕ0cn0 11924 Polycply 24870 coeffccoe 24872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-inf2 9127 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 ax-addf 10644 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-of 7403 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-map 8416 df-pm 8417 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-sup 8929 df-inf 8930 df-oi 8997 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-n0 11925 df-z 12011 df-uz 12273 df-rp 12421 df-fz 12930 df-fzo 13073 df-fl 13201 df-seq 13409 df-exp 13470 df-hash 13731 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-clim 14883 df-rlim 14884 df-sum 15081 df-0p 24360 df-ply 24874 df-coe 24876 df-dgr 24877 |
This theorem is referenced by: dgrcolem2 24960 plydivlem4 24981 plydiveu 24983 vieta1lem2 24996 dgrsub2 40442 |
Copyright terms: Public domain | W3C validator |