MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coesub Structured version   Visualization version   GIF version

Theorem coesub 26316
Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coesub.1 𝐴 = (coeff‘𝐹)
coesub.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coesub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))

Proof of Theorem coesub
StepHypRef Expression
1 plyssc 26259 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
31, 2sselid 4006 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ))
4 ssid 4031 . . . . . 6 ℂ ⊆ ℂ
5 neg1cn 12407 . . . . . 6 -1 ∈ ℂ
6 plyconst 26265 . . . . . 6 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
74, 5, 6mp2an 691 . . . . 5 (ℂ × {-1}) ∈ (Poly‘ℂ)
8 simpr 484 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
91, 8sselid 4006 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ))
10 plymulcl 26280 . . . . 5 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
117, 9, 10sylancr 586 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
12 coesub.1 . . . . 5 𝐴 = (coeff‘𝐹)
13 eqid 2740 . . . . 5 (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺))
1412, 13coeadd 26310 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
153, 11, 14syl2anc 583 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
16 coemulc 26314 . . . . . 6 ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
175, 9, 16sylancr 586 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
18 coesub.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1918oveq2i 7459 . . . . 5 ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))
2017, 19eqtr4di 2798 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵))
2120oveq2d 7464 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
2215, 21eqtrd 2780 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
23 cnex 11265 . . . 4 ℂ ∈ V
24 plyf 26257 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
25 plyf 26257 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
26 ofnegsub 12291 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2723, 24, 25, 26mp3an3an 1467 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2827fveq2d 6924 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹f𝐺)))
29 nn0ex 12559 . . 3 0 ∈ V
3012coef3 26291 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
3118coef3 26291 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
32 ofnegsub 12291 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3329, 30, 31, 32mp3an3an 1467 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3422, 28, 333eqtr3d 2788 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  0cn0 12553  Polycply 26243  coeffccoe 26245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  dgrcolem2  26334  plydivlem4  26356  plydiveu  26358  vieta1lem2  26371  dgrsub2  43092
  Copyright terms: Public domain W3C validator