|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version | ||
| Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) | 
| coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) | 
| Ref | Expression | 
|---|---|
| coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | plyssc 26240 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 3 | 1, 2 | sselid 3980 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) | 
| 4 | ssid 4005 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 5 | neg1cn 12381 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 6 | plyconst 26246 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) | 
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
| 9 | 1, 8 | sselid 3980 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) | 
| 10 | plymulcl 26261 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | 
| 12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
| 13 | eqid 2736 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺)) | |
| 14 | 12, 13 | coeadd 26291 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) | 
| 15 | 3, 11, 14 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) | 
| 16 | coemulc 26295 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | |
| 17 | 5, 9, 16 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | 
| 18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
| 19 | 18 | oveq2i 7443 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)) | 
| 20 | 17, 19 | eqtr4di 2794 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵)) | 
| 21 | 20 | oveq2d 7448 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) | 
| 22 | 15, 21 | eqtrd 2776 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) | 
| 23 | cnex 11237 | . . . 4 ⊢ ℂ ∈ V | |
| 24 | plyf 26238 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 25 | plyf 26238 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 26 | ofnegsub 12265 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 27 | 23, 24, 25, 26 | mp3an3an 1468 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | 
| 28 | 27 | fveq2d 6909 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹 ∘f − 𝐺))) | 
| 29 | nn0ex 12534 | . . 3 ⊢ ℕ0 ∈ V | |
| 30 | 12 | coef3 26272 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | 
| 31 | 18 | coef3 26272 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) | 
| 32 | ofnegsub 12265 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | |
| 33 | 29, 30, 31, 32 | mp3an3an 1468 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | 
| 34 | 22, 28, 33 | 3eqtr3d 2784 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 {csn 4625 × cxp 5682 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 ℂcc 11154 1c1 11157 + caddc 11159 · cmul 11161 − cmin 11493 -cneg 11494 ℕ0cn0 12528 Polycply 26224 coeffccoe 26226 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-0p 25706 df-ply 26228 df-coe 26230 df-dgr 26231 | 
| This theorem is referenced by: dgrcolem2 26315 plydivlem4 26339 plydiveu 26341 vieta1lem2 26354 dgrsub2 43152 | 
| Copyright terms: Public domain | W3C validator |