| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version | ||
| Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) |
| Ref | Expression |
|---|---|
| coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 26176 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 3 | 1, 2 | sselid 3961 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) |
| 4 | ssid 3986 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 5 | neg1cn 12362 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 6 | plyconst 26182 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
| 9 | 1, 8 | sselid 3961 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) |
| 10 | plymulcl 26197 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
| 12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
| 13 | eqid 2734 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺)) | |
| 14 | 12, 13 | coeadd 26227 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 15 | 3, 11, 14 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 16 | coemulc 26231 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | |
| 17 | 5, 9, 16 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) |
| 18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
| 19 | 18 | oveq2i 7424 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)) |
| 20 | 17, 19 | eqtr4di 2787 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵)) |
| 21 | 20 | oveq2d 7429 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 22 | 15, 21 | eqtrd 2769 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 23 | cnex 11218 | . . . 4 ⊢ ℂ ∈ V | |
| 24 | plyf 26174 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 25 | plyf 26174 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 26 | ofnegsub 12246 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 27 | 23, 24, 25, 26 | mp3an3an 1468 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 28 | 27 | fveq2d 6890 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹 ∘f − 𝐺))) |
| 29 | nn0ex 12515 | . . 3 ⊢ ℕ0 ∈ V | |
| 30 | 12 | coef3 26208 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 31 | 18 | coef3 26208 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
| 32 | ofnegsub 12246 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | |
| 33 | 29, 30, 31, 32 | mp3an3an 1468 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) |
| 34 | 22, 28, 33 | 3eqtr3d 2777 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 ℂcc 11135 1c1 11138 + caddc 11140 · cmul 11142 − cmin 11474 -cneg 11475 ℕ0cn0 12509 Polycply 26160 coeffccoe 26162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-0p 25642 df-ply 26164 df-coe 26166 df-dgr 26167 |
| This theorem is referenced by: dgrcolem2 26251 plydivlem4 26275 plydiveu 26277 vieta1lem2 26290 dgrsub2 43125 |
| Copyright terms: Public domain | W3C validator |