MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coesub Structured version   Visualization version   GIF version

Theorem coesub 26190
Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coesub.1 𝐴 = (coeff‘𝐹)
coesub.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coesub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))

Proof of Theorem coesub
StepHypRef Expression
1 plyssc 26133 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 482 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3932 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ))
4 ssid 3957 . . . . . 6 ℂ ⊆ ℂ
5 neg1cn 12110 . . . . . 6 -1 ∈ ℂ
6 plyconst 26139 . . . . . 6 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
74, 5, 6mp2an 692 . . . . 5 (ℂ × {-1}) ∈ (Poly‘ℂ)
8 simpr 484 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
91, 8sselid 3932 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ))
10 plymulcl 26154 . . . . 5 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
117, 9, 10sylancr 587 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ))
12 coesub.1 . . . . 5 𝐴 = (coeff‘𝐹)
13 eqid 2731 . . . . 5 (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺))
1412, 13coeadd 26184 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
153, 11, 14syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))))
16 coemulc 26188 . . . . . 6 ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
175, 9, 16sylancr 587 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)))
18 coesub.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1918oveq2i 7357 . . . . 5 ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))
2017, 19eqtr4di 2784 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵))
2120oveq2d 7362 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
2215, 21eqtrd 2766 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)))
23 cnex 11087 . . . 4 ℂ ∈ V
24 plyf 26131 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
25 plyf 26131 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
26 ofnegsub 12123 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2723, 24, 25, 26mp3an3an 1469 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2827fveq2d 6826 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹f𝐺)))
29 nn0ex 12387 . . 3 0 ∈ V
3012coef3 26165 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
3118coef3 26165 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
32 ofnegsub 12123 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3329, 30, 31, 32mp3an3an 1469 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴f𝐵))
3422, 28, 333eqtr3d 2774 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f𝐺)) = (𝐴f𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  {csn 4576   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345  0cn0 12381  Polycply 26117  coeffccoe 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124
This theorem is referenced by:  dgrcolem2  26208  plydivlem4  26232  plydiveu  26234  vieta1lem2  26247  dgrsub2  43174
  Copyright terms: Public domain W3C validator