| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version | ||
| Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) |
| Ref | Expression |
|---|---|
| coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 26135 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 3 | 1, 2 | sselid 3928 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) |
| 4 | ssid 3953 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 5 | neg1cn 12119 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 6 | plyconst 26141 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
| 9 | 1, 8 | sselid 3928 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) |
| 10 | plymulcl 26156 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
| 12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
| 13 | eqid 2733 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺)) | |
| 14 | 12, 13 | coeadd 26186 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 15 | 3, 11, 14 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 16 | coemulc 26190 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | |
| 17 | 5, 9, 16 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) |
| 18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
| 19 | 18 | oveq2i 7365 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)) |
| 20 | 17, 19 | eqtr4di 2786 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵)) |
| 21 | 20 | oveq2d 7370 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 22 | 15, 21 | eqtrd 2768 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 23 | cnex 11096 | . . . 4 ⊢ ℂ ∈ V | |
| 24 | plyf 26133 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 25 | plyf 26133 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 26 | ofnegsub 12132 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 27 | 23, 24, 25, 26 | mp3an3an 1469 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 28 | 27 | fveq2d 6834 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹 ∘f − 𝐺))) |
| 29 | nn0ex 12396 | . . 3 ⊢ ℕ0 ∈ V | |
| 30 | 12 | coef3 26167 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 31 | 18 | coef3 26167 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
| 32 | ofnegsub 12132 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | |
| 33 | 29, 30, 31, 32 | mp3an3an 1469 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) |
| 34 | 22, 28, 33 | 3eqtr3d 2776 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4577 × cxp 5619 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ∘f cof 7616 ℂcc 11013 1c1 11016 + caddc 11018 · cmul 11020 − cmin 11353 -cneg 11354 ℕ0cn0 12390 Polycply 26119 coeffccoe 26121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-0p 25601 df-ply 26123 df-coe 26125 df-dgr 26126 |
| This theorem is referenced by: dgrcolem2 26210 plydivlem4 26234 plydiveu 26236 vieta1lem2 26249 dgrsub2 43255 |
| Copyright terms: Public domain | W3C validator |