| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coesub | Structured version Visualization version GIF version | ||
| Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| coesub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| coesub.2 | ⊢ 𝐵 = (coeff‘𝐺) |
| Ref | Expression |
|---|---|
| coesub | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 26162 | . . . . 5 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 3 | 1, 2 | sselid 3961 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘ℂ)) |
| 4 | ssid 3986 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 5 | neg1cn 12359 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 6 | plyconst 26168 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . 5 ⊢ (ℂ × {-1}) ∈ (Poly‘ℂ) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | |
| 9 | 1, 8 | sselid 3961 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘ℂ)) |
| 10 | plymulcl 26183 | . . . . 5 ⊢ (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) |
| 12 | coesub.1 | . . . . 5 ⊢ 𝐴 = (coeff‘𝐹) | |
| 13 | eqid 2736 | . . . . 5 ⊢ (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = (coeff‘((ℂ × {-1}) ∘f · 𝐺)) | |
| 14 | 12, 13 | coeadd 26213 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘f · 𝐺) ∈ (Poly‘ℂ)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 15 | 3, 11, 14 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺)))) |
| 16 | coemulc 26217 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐺 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) | |
| 17 | 5, 9, 16 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺))) |
| 18 | coesub.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
| 19 | 18 | oveq2i 7421 | . . . . 5 ⊢ ((ℕ0 × {-1}) ∘f · 𝐵) = ((ℕ0 × {-1}) ∘f · (coeff‘𝐺)) |
| 20 | 17, 19 | eqtr4di 2789 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {-1}) ∘f · 𝐺)) = ((ℕ0 × {-1}) ∘f · 𝐵)) |
| 21 | 20 | oveq2d 7426 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + (coeff‘((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 22 | 15, 21 | eqtrd 2771 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵))) |
| 23 | cnex 11215 | . . . 4 ⊢ ℂ ∈ V | |
| 24 | plyf 26160 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 25 | plyf 26160 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 26 | ofnegsub 12243 | . . . 4 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 27 | 23, 24, 25, 26 | mp3an3an 1469 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 28 | 27 | fveq2d 6885 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + ((ℂ × {-1}) ∘f · 𝐺))) = (coeff‘(𝐹 ∘f − 𝐺))) |
| 29 | nn0ex 12512 | . . 3 ⊢ ℕ0 ∈ V | |
| 30 | 12 | coef3 26194 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 31 | 18 | coef3 26194 | . . 3 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ) |
| 32 | ofnegsub 12243 | . . 3 ⊢ ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) | |
| 33 | 29, 30, 31, 32 | mp3an3an 1469 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 ∘f + ((ℕ0 × {-1}) ∘f · 𝐵)) = (𝐴 ∘f − 𝐵)) |
| 34 | 22, 28, 33 | 3eqtr3d 2779 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 − cmin 11471 -cneg 11472 ℕ0cn0 12506 Polycply 26146 coeffccoe 26148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-0p 25628 df-ply 26150 df-coe 26152 df-dgr 26153 |
| This theorem is referenced by: dgrcolem2 26237 plydivlem4 26261 plydiveu 26263 vieta1lem2 26276 dgrsub2 43126 |
| Copyright terms: Public domain | W3C validator |