MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem3 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem3 14373
Description: Lemma 3 for pfxccatin12 14374. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12lem3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))

Proof of Theorem pfxccatin12lem3
StepHypRef Expression
1 simpll 763 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfzo0 13356 . . . . . . . . 9 (𝐾 ∈ (0..^(𝐿𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)))
3 swrdccatin2.l . . . . . . . . . . . . 13 𝐿 = (♯‘𝐴)
4 lencl 14164 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
5 elfz2nn0 13276 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
6 nn0addcl 12198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 𝑀) ∈ ℕ0)
76ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
873ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
98com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1093ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1110imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) ∈ ℕ0)
12 elnnz 12259 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿𝑀) ∈ ℕ ↔ ((𝐿𝑀) ∈ ℤ ∧ 0 < (𝐿𝑀)))
13 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
14 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 posdif 11398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
1613, 14, 15syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
17 elnn0z 12262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
18 0re 10908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ∈ ℝ
19 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
20 lelttr 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
2118, 19, 14, 20mp3an3an 1465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
22 nn0z 12273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2322anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → (𝐿 ∈ ℤ ∧ 0 < 𝐿))
24 elnnz 12259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
2523, 24sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → 𝐿 ∈ ℕ)
2625ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐿 ∈ ℕ0 → (0 < 𝐿𝐿 ∈ ℕ))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 < 𝐿𝐿 ∈ ℕ))
2821, 27syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 𝐿 ∈ ℕ))
2928expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 ≤ 𝑀 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3029impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3117, 30sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3231imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝐿 ∈ ℕ))
3316, 32sylbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 < (𝐿𝑀) → 𝐿 ∈ ℕ))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3512, 34simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐿𝑀) ∈ ℕ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
36353ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3736com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
38373adant3 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
3938imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → 𝐿 ∈ ℕ)
40 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐾 ∈ ℝ)
42133ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝑀 ∈ ℝ)
4342adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝑀 ∈ ℝ)
44143ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝐿 ∈ ℝ)
4544adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐿 ∈ ℝ)
4641, 43, 45ltaddsubd 11505 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → ((𝐾 + 𝑀) < 𝐿𝐾 < (𝐿𝑀)))
4746exbiri 807 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 < (𝐿𝑀) → (𝐾 + 𝑀) < 𝐿)))
4847com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐾 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿)))
4948imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
50493adant2 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
5150impcom 407 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) < 𝐿)
5211, 39, 513jca 1126 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))
5352ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
5453a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
555, 54sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
5655imp 406 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
57562a1i 12 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
58 eleq1 2826 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0))
59 eleq1 2826 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ ↔ 𝐿 ∈ ℕ))
60 breq2 5074 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) < (♯‘𝐴) ↔ (𝐾 + 𝑀) < 𝐿))
6159, 603anbi23d 1437 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) = 𝐿 → (((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
6261imbi2d 340 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) = 𝐿 → (((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))) ↔ ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
6362imbi2d 340 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))) ↔ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
6457, 58, 633imtr4d 293 . . . . . . . . . . . . . 14 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
6564eqcoms 2746 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
663, 4, 65mpsyl 68 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6766adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6867imp 406 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
6968com12 32 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
702, 69sylbi 216 . . . . . . . 8 (𝐾 ∈ (0..^(𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7170adantl 481 . . . . . . 7 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7271impcom 407 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
73 elfzo0 13356 . . . . . 6 ((𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
7472, 73sylibr 233 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)))
75 df-3an 1087 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
761, 74, 75sylanbrc 582 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
77 ccatval1 14209 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
7876, 77syl 17 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
793pfxccatin12lem2c 14371 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
80 simpl 482 . . . 4 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ (0..^(𝑁𝑀)))
81 swrdfv 14289 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
8279, 80, 81syl2an 595 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
83 simplll 771 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐴 ∈ Word 𝑉)
84 simplrl 773 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ (0...𝐿))
853eleq1i 2829 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
86 elnn0uz 12552 . . . . . . . . 9 (𝐿 ∈ ℕ0𝐿 ∈ (ℤ‘0))
87 eluzfz2 13193 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → 𝐿 ∈ (0...𝐿))
8886, 87sylbi 216 . . . . . . . 8 (𝐿 ∈ ℕ0𝐿 ∈ (0...𝐿))
893oveq2i 7266 . . . . . . . 8 (0...𝐿) = (0...(♯‘𝐴))
9088, 89eleqtrdi 2849 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
9185, 90sylbir 234 . . . . . 6 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
924, 91syl 17 . . . . 5 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
9392ad3antrrr 726 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ (0...(♯‘𝐴)))
94 simprr 769 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝐿𝑀)))
95 swrdfv 14289 . . . 4 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9683, 84, 93, 94, 95syl31anc 1371 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9778, 82, 963eqtr4d 2788 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾))
9897ex 412 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201   substr csubstr 14281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282
This theorem is referenced by:  pfxccatin12  14374
  Copyright terms: Public domain W3C validator