MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem3 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem3 14740
Description: Lemma 3 for pfxccatin12 14741. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12lem3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))

Proof of Theorem pfxccatin12lem3
StepHypRef Expression
1 simpll 765 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfzo0 13727 . . . . . . . . 9 (𝐾 ∈ (0..^(𝐿𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)))
3 swrdccatin2.l . . . . . . . . . . . . 13 𝐿 = (♯‘𝐴)
4 lencl 14541 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
5 elfz2nn0 13646 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
6 nn0addcl 12559 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 𝑀) ∈ ℕ0)
76ex 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
873ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
98com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1093ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1110imp 405 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) ∈ ℕ0)
12 elnnz 12620 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿𝑀) ∈ ℕ ↔ ((𝐿𝑀) ∈ ℤ ∧ 0 < (𝐿𝑀)))
13 nn0re 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
14 nn0re 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 posdif 11757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
1613, 14, 15syl2an 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
17 elnn0z 12623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
18 0re 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ∈ ℝ
19 zre 12614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
20 lelttr 11354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
2118, 19, 14, 20mp3an3an 1464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
22 nn0z 12635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2322anim1i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → (𝐿 ∈ ℤ ∧ 0 < 𝐿))
24 elnnz 12620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
2523, 24sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → 𝐿 ∈ ℕ)
2625ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐿 ∈ ℕ0 → (0 < 𝐿𝐿 ∈ ℕ))
2726adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 < 𝐿𝐿 ∈ ℕ))
2821, 27syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 𝐿 ∈ ℕ))
2928expd 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 ≤ 𝑀 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3029impancom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3117, 30sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3231imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝐿 ∈ ℕ))
3316, 32sylbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 < (𝐿𝑀) → 𝐿 ∈ ℕ))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3512, 34simplbiim 503 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐿𝑀) ∈ ℕ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
36353ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3736com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
38373adant3 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
3938imp 405 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → 𝐿 ∈ ℕ)
40 nn0re 12533 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
4140adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐾 ∈ ℝ)
42133ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝑀 ∈ ℝ)
4342adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝑀 ∈ ℝ)
44143ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝐿 ∈ ℝ)
4544adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐿 ∈ ℝ)
4641, 43, 45ltaddsubd 11864 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → ((𝐾 + 𝑀) < 𝐿𝐾 < (𝐿𝑀)))
4746exbiri 809 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 < (𝐿𝑀) → (𝐾 + 𝑀) < 𝐿)))
4847com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐾 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿)))
4948imp 405 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
50493adant2 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
5150impcom 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) < 𝐿)
5211, 39, 513jca 1125 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))
5352ex 411 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
5453a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
555, 54sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
5655imp 405 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
57562a1i 12 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
58 eleq1 2814 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0))
59 eleq1 2814 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ ↔ 𝐿 ∈ ℕ))
60 breq2 5157 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) < (♯‘𝐴) ↔ (𝐾 + 𝑀) < 𝐿))
6159, 603anbi23d 1436 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) = 𝐿 → (((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
6261imbi2d 339 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) = 𝐿 → (((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))) ↔ ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
6362imbi2d 339 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))) ↔ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
6457, 58, 633imtr4d 293 . . . . . . . . . . . . . 14 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
6564eqcoms 2734 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
663, 4, 65mpsyl 68 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6766adantr 479 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6867imp 405 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
6968com12 32 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
702, 69sylbi 216 . . . . . . . 8 (𝐾 ∈ (0..^(𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7170adantl 480 . . . . . . 7 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7271impcom 406 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
73 elfzo0 13727 . . . . . 6 ((𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
7472, 73sylibr 233 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)))
75 df-3an 1086 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
761, 74, 75sylanbrc 581 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
77 ccatval1 14585 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
7876, 77syl 17 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
793pfxccatin12lem2c 14738 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
80 simpl 481 . . . 4 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ (0..^(𝑁𝑀)))
81 swrdfv 14656 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
8279, 80, 81syl2an 594 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
83 simplll 773 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐴 ∈ Word 𝑉)
84 simplrl 775 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ (0...𝐿))
853eleq1i 2817 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
86 elnn0uz 12919 . . . . . . . . 9 (𝐿 ∈ ℕ0𝐿 ∈ (ℤ‘0))
87 eluzfz2 13563 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → 𝐿 ∈ (0...𝐿))
8886, 87sylbi 216 . . . . . . . 8 (𝐿 ∈ ℕ0𝐿 ∈ (0...𝐿))
893oveq2i 7435 . . . . . . . 8 (0...𝐿) = (0...(♯‘𝐴))
9088, 89eleqtrdi 2836 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
9185, 90sylbir 234 . . . . . 6 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
924, 91syl 17 . . . . 5 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
9392ad3antrrr 728 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ (0...(♯‘𝐴)))
94 simprr 771 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝐿𝑀)))
95 swrdfv 14656 . . . 4 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9683, 84, 93, 94, 95syl31anc 1370 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9778, 82, 963eqtr4d 2776 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾))
9897ex 411 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  cop 4639   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158   + caddc 11161   < clt 11298  cle 11299  cmin 11494  cn 12264  0cn0 12524  cz 12610  cuz 12874  ...cfz 13538  ..^cfzo 13681  chash 14347  Word cword 14522   ++ cconcat 14578   substr csubstr 14648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-substr 14649
This theorem is referenced by:  pfxccatin12  14741
  Copyright terms: Public domain W3C validator