MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem3 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem3 14627
Description: Lemma 3 for pfxccatin12 14628. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12lem3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))

Proof of Theorem pfxccatin12lem3
StepHypRef Expression
1 simpll 766 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfzo0 13620 . . . . . . . . 9 (𝐾 ∈ (0..^(𝐿𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)))
3 swrdccatin2.l . . . . . . . . . . . . 13 𝐿 = (♯‘𝐴)
4 lencl 14428 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
5 elfz2nn0 13539 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
6 nn0addcl 12455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 𝑀) ∈ ℕ0)
76ex 414 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
873ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
98com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1093ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1110imp 408 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) ∈ ℕ0)
12 elnnz 12516 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿𝑀) ∈ ℕ ↔ ((𝐿𝑀) ∈ ℤ ∧ 0 < (𝐿𝑀)))
13 nn0re 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
14 nn0re 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 posdif 11655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
1613, 14, 15syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
17 elnn0z 12519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
18 0re 11164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ∈ ℝ
19 zre 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
20 lelttr 11252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
2118, 19, 14, 20mp3an3an 1468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
22 nn0z 12531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2322anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → (𝐿 ∈ ℤ ∧ 0 < 𝐿))
24 elnnz 12516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
2523, 24sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → 𝐿 ∈ ℕ)
2625ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐿 ∈ ℕ0 → (0 < 𝐿𝐿 ∈ ℕ))
2726adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 < 𝐿𝐿 ∈ ℕ))
2821, 27syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 𝐿 ∈ ℕ))
2928expd 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 ≤ 𝑀 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3029impancom 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3117, 30sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3231imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝐿 ∈ ℕ))
3316, 32sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 < (𝐿𝑀) → 𝐿 ∈ ℕ))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3512, 34simplbiim 506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐿𝑀) ∈ ℕ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
36353ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3736com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
38373adant3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
3938imp 408 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → 𝐿 ∈ ℕ)
40 nn0re 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
4140adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐾 ∈ ℝ)
42133ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝑀 ∈ ℝ)
4342adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝑀 ∈ ℝ)
44143ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝐿 ∈ ℝ)
4544adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐿 ∈ ℝ)
4641, 43, 45ltaddsubd 11762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → ((𝐾 + 𝑀) < 𝐿𝐾 < (𝐿𝑀)))
4746exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 < (𝐿𝑀) → (𝐾 + 𝑀) < 𝐿)))
4847com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐾 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿)))
4948imp 408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
50493adant2 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
5150impcom 409 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) < 𝐿)
5211, 39, 513jca 1129 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))
5352ex 414 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
5453a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
555, 54sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
5655imp 408 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
57562a1i 12 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
58 eleq1 2826 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0))
59 eleq1 2826 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ ↔ 𝐿 ∈ ℕ))
60 breq2 5114 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) < (♯‘𝐴) ↔ (𝐾 + 𝑀) < 𝐿))
6159, 603anbi23d 1440 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) = 𝐿 → (((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
6261imbi2d 341 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) = 𝐿 → (((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))) ↔ ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
6362imbi2d 341 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))) ↔ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
6457, 58, 633imtr4d 294 . . . . . . . . . . . . . 14 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
6564eqcoms 2745 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
663, 4, 65mpsyl 68 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6766adantr 482 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6867imp 408 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
6968com12 32 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
702, 69sylbi 216 . . . . . . . 8 (𝐾 ∈ (0..^(𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7170adantl 483 . . . . . . 7 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7271impcom 409 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
73 elfzo0 13620 . . . . . 6 ((𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
7472, 73sylibr 233 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)))
75 df-3an 1090 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
761, 74, 75sylanbrc 584 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
77 ccatval1 14472 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
7876, 77syl 17 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
793pfxccatin12lem2c 14625 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
80 simpl 484 . . . 4 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ (0..^(𝑁𝑀)))
81 swrdfv 14543 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
8279, 80, 81syl2an 597 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
83 simplll 774 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐴 ∈ Word 𝑉)
84 simplrl 776 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ (0...𝐿))
853eleq1i 2829 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
86 elnn0uz 12815 . . . . . . . . 9 (𝐿 ∈ ℕ0𝐿 ∈ (ℤ‘0))
87 eluzfz2 13456 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → 𝐿 ∈ (0...𝐿))
8886, 87sylbi 216 . . . . . . . 8 (𝐿 ∈ ℕ0𝐿 ∈ (0...𝐿))
893oveq2i 7373 . . . . . . . 8 (0...𝐿) = (0...(♯‘𝐴))
9088, 89eleqtrdi 2848 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
9185, 90sylbir 234 . . . . . 6 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
924, 91syl 17 . . . . 5 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
9392ad3antrrr 729 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ (0...(♯‘𝐴)))
94 simprr 772 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝐿𝑀)))
95 swrdfv 14543 . . . 4 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9683, 84, 93, 94, 95syl31anc 1374 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9778, 82, 963eqtr4d 2787 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾))
9897ex 414 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cop 4597   class class class wbr 5110  cfv 6501  (class class class)co 7362  cr 11057  0cc0 11058   + caddc 11061   < clt 11196  cle 11197  cmin 11392  cn 12160  0cn0 12420  cz 12506  cuz 12770  ...cfz 13431  ..^cfzo 13574  chash 14237  Word cword 14409   ++ cconcat 14465   substr csubstr 14535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-substr 14536
This theorem is referenced by:  pfxccatin12  14628
  Copyright terms: Public domain W3C validator