MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Visualization version   GIF version

Theorem supminf 12901
Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
supminf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem supminf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . . . 5 {𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ
2 negn0 11614 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
3 ublbneg 12899 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
4 infrenegsup 12173 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
51, 2, 3, 4mp3an3an 1469 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
653impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
7 elrabi 3657 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} → 𝑥 ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}) → 𝑥 ∈ ℝ)
9 ssel2 3944 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 11420 . . . . . . . . . . 11 (𝑤 = 𝑥 → -𝑤 = -𝑥)
1110eleq1d 2814 . . . . . . . . . 10 (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1211elrab3 3663 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 renegcl 11492 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 11420 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
1514eleq1d 2814 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
1615elrab3 3663 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
1713, 16syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
18 recn 11165 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 11531 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2814 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 305 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
2221adantl 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2729 . . . . . 6 (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} = 𝐴)
2423supeq1d 9404 . . . . 5 (𝐴 ⊆ ℝ → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
25243ad2ant1 1133 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2625negeqd 11422 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
276, 26eqtrd 2765 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
28 infrecl 12172 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
291, 2, 3, 28mp3an3an 1469 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
30293impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
31 suprcl 12150 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
32 recn 11165 . . . 4 (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ)
33 recn 11165 . . . 4 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
34 negcon2 11482 . . . 4 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3532, 33, 34syl2an 596 . . 3 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3630, 31, 35syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3727, 36mpbid 232 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  supcsup 9398  infcinf 9399  cc 11073  cr 11074   < clt 11215  cle 11216  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  supminfrnmpt  45448
  Copyright terms: Public domain W3C validator