MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Visualization version   GIF version

Theorem supminf 12915
Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
supminf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem supminf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4076 . . . . 5 {𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ
2 negn0 11639 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
3 ublbneg 12913 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
4 infrenegsup 12193 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
51, 2, 3, 4mp3an3an 1467 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
653impa 1110 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
7 elrabi 3676 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} → 𝑥 ∈ ℝ)
87adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}) → 𝑥 ∈ ℝ)
9 ssel2 3976 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 11448 . . . . . . . . . . 11 (𝑤 = 𝑥 → -𝑤 = -𝑥)
1110eleq1d 2818 . . . . . . . . . 10 (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1211elrab3 3683 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 renegcl 11519 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 11448 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
1514eleq1d 2818 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
1615elrab3 3683 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
1713, 16syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
18 recn 11196 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 11558 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2818 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 304 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
2221adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2731 . . . . . 6 (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} = 𝐴)
2423supeq1d 9437 . . . . 5 (𝐴 ⊆ ℝ → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
25243ad2ant1 1133 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2625negeqd 11450 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
276, 26eqtrd 2772 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
28 infrecl 12192 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
291, 2, 3, 28mp3an3an 1467 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
30293impa 1110 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
31 suprcl 12170 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
32 recn 11196 . . . 4 (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ)
33 recn 11196 . . . 4 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
34 negcon2 11509 . . . 4 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3532, 33, 34syl2an 596 . . 3 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3630, 31, 35syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3727, 36mpbid 231 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  wss 3947  c0 4321   class class class wbr 5147  supcsup 9431  infcinf 9432  cc 11104  cr 11105   < clt 11244  cle 11245  -cneg 11441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  supminfrnmpt  44141
  Copyright terms: Public domain W3C validator