MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Visualization version   GIF version

Theorem supminf 12835
Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
supminf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem supminf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4029 . . . . 5 {𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ
2 negn0 11553 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
3 ublbneg 12833 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
4 infrenegsup 12112 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
51, 2, 3, 4mp3an3an 1469 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
653impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
7 elrabi 3639 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} → 𝑥 ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}) → 𝑥 ∈ ℝ)
9 ssel2 3925 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 11359 . . . . . . . . . . 11 (𝑤 = 𝑥 → -𝑤 = -𝑥)
1110eleq1d 2818 . . . . . . . . . 10 (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1211elrab3 3644 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 renegcl 11431 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 11359 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
1514eleq1d 2818 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
1615elrab3 3644 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
1713, 16syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
18 recn 11103 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 11470 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2818 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 305 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
2221adantl 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2732 . . . . . 6 (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} = 𝐴)
2423supeq1d 9337 . . . . 5 (𝐴 ⊆ ℝ → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
25243ad2ant1 1133 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2625negeqd 11361 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
276, 26eqtrd 2768 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
28 infrecl 12111 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
291, 2, 3, 28mp3an3an 1469 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
30293impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
31 suprcl 12089 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
32 recn 11103 . . . 4 (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ)
33 recn 11103 . . . 4 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
34 negcon2 11421 . . . 4 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3532, 33, 34syl2an 596 . . 3 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3630, 31, 35syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3727, 36mpbid 232 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  wss 3898  c0 4282   class class class wbr 5093  supcsup 9331  infcinf 9332  cc 11011  cr 11012   < clt 11153  cle 11154  -cneg 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354
This theorem is referenced by:  supminfrnmpt  45568
  Copyright terms: Public domain W3C validator