MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Visualization version   GIF version

Theorem supminf 12675
Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
supminf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem supminf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . . . . 5 {𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ
2 negn0 11404 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
3 ublbneg 12673 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
4 infrenegsup 11958 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
51, 2, 3, 4mp3an3an 1466 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
653impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ))
7 elrabi 3618 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} → 𝑥 ∈ ℝ)
87adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}) → 𝑥 ∈ ℝ)
9 ssel2 3916 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 11213 . . . . . . . . . . 11 (𝑤 = 𝑥 → -𝑤 = -𝑥)
1110eleq1d 2823 . . . . . . . . . 10 (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
1211elrab3 3625 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
13 renegcl 11284 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 11213 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
1514eleq1d 2823 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
1615elrab3 3625 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
1713, 16syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
18 recn 10961 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 11323 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2823 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 305 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
2221adantl 482 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2737 . . . . . 6 (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}} = 𝐴)
2423supeq1d 9205 . . . . 5 (𝐴 ⊆ ℝ → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
25243ad2ant1 1132 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2625negeqd 11215 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
276, 26eqtrd 2778 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
28 infrecl 11957 . . . . 5 (({𝑧 ∈ ℝ ∣ -𝑧𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
291, 2, 3, 28mp3an3an 1466 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
30293impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ)
31 suprcl 11935 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
32 recn 10961 . . . 4 (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ → inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ)
33 recn 10961 . . . 4 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
34 negcon2 11274 . . . 4 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3532, 33, 34syl2an 596 . . 3 ((inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) ∈ ℝ ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3630, 31, 35syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < )))
3727, 36mpbid 231 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  supcsup 9199  infcinf 9200  cc 10869  cr 10870   < clt 11009  cle 11010  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  supminfrnmpt  42985
  Copyright terms: Public domain W3C validator