Step | Hyp | Ref
| Expression |
1 | | ssrab2 4013 |
. . . . 5
⊢ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ⊆ ℝ |
2 | | negn0 11404 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) |
3 | | ublbneg 12673 |
. . . . 5
⊢
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
4 | | infrenegsup 11958 |
. . . . 5
⊢ (({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < )) |
5 | 1, 2, 3, 4 | mp3an3an 1466 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < )) |
6 | 5 | 3impa 1109 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < )) |
7 | | elrabi 3618 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}} → 𝑥 ∈ ℝ) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}) → 𝑥 ∈ ℝ) |
9 | | ssel2 3916 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
10 | | negeq 11213 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → -𝑤 = -𝑥) |
11 | 10 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (-𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
12 | 11 | elrab3 3625 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}} ↔ -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
13 | | renegcl 11284 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
14 | | negeq 11213 |
. . . . . . . . . . . 12
⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) |
15 | 14 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
16 | 15 | elrab3 3625 |
. . . . . . . . . 10
⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
17 | 13, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
18 | | recn 10961 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
19 | 18 | negnegd 11323 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
20 | 19 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
21 | 12, 17, 20 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}} ↔ 𝑥 ∈ 𝐴)) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}} ↔ 𝑥 ∈ 𝐴)) |
23 | 8, 9, 22 | eqrdav 2737 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ → {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}} = 𝐴) |
24 | 23 | supeq1d 9205 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
sup({𝑤 ∈ ℝ
∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < )) |
25 | 24 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < )) |
26 | 25 | negeqd 11215 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < )) |
27 | 6, 26 | eqtrd 2778 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < )) |
28 | | infrecl 11957 |
. . . . 5
⊢ (({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ⊆ ℝ ∧ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
29 | 1, 2, 3, 28 | mp3an3an 1466 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
30 | 29 | 3impa 1109 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
31 | | suprcl 11935 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ) |
32 | | recn 10961 |
. . . 4
⊢
(inf({𝑧 ∈
ℝ ∣ -𝑧 ∈
𝐴}, ℝ, < ) ∈
ℝ → inf({𝑧
∈ ℝ ∣ -𝑧
∈ 𝐴}, ℝ, < )
∈ ℂ) |
33 | | recn 10961 |
. . . 4
⊢
(sup(𝐴, ℝ,
< ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈
ℂ) |
34 | | negcon2 11274 |
. . . 4
⊢
((inf({𝑧 ∈
ℝ ∣ -𝑧 ∈
𝐴}, ℝ, < ) ∈
ℂ ∧ sup(𝐴,
ℝ, < ) ∈ ℂ) → (inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ))) |
35 | 32, 33, 34 | syl2an 596 |
. . 3
⊢
((inf({𝑧 ∈
ℝ ∣ -𝑧 ∈
𝐴}, ℝ, < ) ∈
ℝ ∧ sup(𝐴,
ℝ, < ) ∈ ℝ) → (inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ))) |
36 | 30, 31, 35 | syl2anc 584 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < ))) |
37 | 27, 36 | mpbid 231 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |