| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1sub | Structured version Visualization version GIF version | ||
| Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg1sub | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
| 3 | neg1rr 12360 | . . . . . 6 ⊢ -1 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → -1 ∈ ℝ) |
| 5 | 2, 4 | i1fmulc 25661 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1) |
| 6 | 1, 5 | itg1add 25659 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺)))) |
| 7 | 2, 4 | itg1mulc 25662 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1‘𝐺))) |
| 8 | itg1cl 25643 | . . . . . . . 8 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
| 9 | 8 | recnd 11268 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘𝐺) ∈ ℂ) |
| 11 | 10 | mulm1d 11694 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (-1 · (∫1‘𝐺)) = -(∫1‘𝐺)) |
| 12 | 7, 11 | eqtrd 2771 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1‘𝐺)) |
| 13 | 12 | oveq2d 7426 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
| 14 | 6, 13 | eqtrd 2771 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
| 15 | reex 11225 | . . . 4 ⊢ ℝ ∈ V | |
| 16 | i1ff 25634 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 17 | ax-resscn 11191 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 18 | fss 6727 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℂ) |
| 20 | i1ff 25634 | . . . . 5 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
| 21 | fss 6727 | . . . . 5 ⊢ ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) | |
| 22 | 20, 17, 21 | sylancl 586 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℂ) |
| 23 | ofnegsub 12243 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 24 | 15, 19, 22, 23 | mp3an3an 1469 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 25 | 24 | fveq2d 6885 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹 ∘f − 𝐺))) |
| 26 | itg1cl 25643 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
| 27 | 26 | recnd 11268 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℂ) |
| 28 | negsub 11536 | . . 3 ⊢ (((∫1‘𝐹) ∈ ℂ ∧ (∫1‘𝐺) ∈ ℂ) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | |
| 29 | 27, 9, 28 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| 30 | 14, 25, 29 | 3eqtr3d 2779 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 × cxp 5657 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ℂcc 11132 ℝcr 11133 1c1 11135 + caddc 11137 · cmul 11139 − cmin 11471 -cneg 11472 ∫1citg1 25573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xadd 13134 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-xmet 21313 df-met 21314 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 |
| This theorem is referenced by: itg1lea 25670 itgitg1 25767 itg2addnclem 37700 |
| Copyright terms: Public domain | W3C validator |