MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1sub Structured version   Visualization version   GIF version

Theorem itg1sub 24779
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itg1sub ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))

Proof of Theorem itg1sub
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
2 simpr 484 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
3 neg1rr 12018 . . . . . 6 -1 ∈ ℝ
43a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → -1 ∈ ℝ)
52, 4i1fmulc 24773 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1)
61, 5itg1add 24771 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))))
72, 4itg1mulc 24774 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1𝐺)))
8 itg1cl 24754 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
98recnd 10934 . . . . . . 7 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℂ)
102, 9syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1𝐺) ∈ ℂ)
1110mulm1d 11357 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (-1 · (∫1𝐺)) = -(∫1𝐺))
127, 11eqtrd 2778 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1𝐺))
1312oveq2d 7271 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
146, 13eqtrd 2778 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
15 reex 10893 . . . 4 ℝ ∈ V
16 i1ff 24745 . . . . 5 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
17 ax-resscn 10859 . . . . 5 ℝ ⊆ ℂ
18 fss 6601 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
1916, 17, 18sylancl 585 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℂ)
20 i1ff 24745 . . . . 5 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
21 fss 6601 . . . . 5 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
2220, 17, 21sylancl 585 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℂ)
23 ofnegsub 11901 . . . 4 ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2415, 19, 22, 23mp3an3an 1465 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2524fveq2d 6760 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹f𝐺)))
26 itg1cl 24754 . . . 4 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
2726recnd 10934 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℂ)
28 negsub 11199 . . 3 (((∫1𝐹) ∈ ℂ ∧ (∫1𝐺) ∈ ℂ) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
2927, 9, 28syl2an 595 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
3014, 25, 293eqtr3d 2786 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558   × cxp 5578  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689
This theorem is referenced by:  itg1lea  24782  itgitg1  24878  itg2addnclem  35755
  Copyright terms: Public domain W3C validator