MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1sub Structured version   Visualization version   GIF version

Theorem itg1sub 25759
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itg1sub ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))

Proof of Theorem itg1sub
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
2 simpr 484 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
3 neg1rr 12379 . . . . . 6 -1 ∈ ℝ
43a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → -1 ∈ ℝ)
52, 4i1fmulc 25753 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1)
61, 5itg1add 25751 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))))
72, 4itg1mulc 25754 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1𝐺)))
8 itg1cl 25734 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
98recnd 11287 . . . . . . 7 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℂ)
102, 9syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1𝐺) ∈ ℂ)
1110mulm1d 11713 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (-1 · (∫1𝐺)) = -(∫1𝐺))
127, 11eqtrd 2775 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1𝐺))
1312oveq2d 7447 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
146, 13eqtrd 2775 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
15 reex 11244 . . . 4 ℝ ∈ V
16 i1ff 25725 . . . . 5 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
17 ax-resscn 11210 . . . . 5 ℝ ⊆ ℂ
18 fss 6753 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
1916, 17, 18sylancl 586 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℂ)
20 i1ff 25725 . . . . 5 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
21 fss 6753 . . . . 5 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
2220, 17, 21sylancl 586 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℂ)
23 ofnegsub 12262 . . . 4 ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2415, 19, 22, 23mp3an3an 1466 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2524fveq2d 6911 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹f𝐺)))
26 itg1cl 25734 . . . 4 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
2726recnd 11287 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℂ)
28 negsub 11555 . . 3 (((∫1𝐹) ∈ ℂ ∧ (∫1𝐺) ∈ ℂ) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
2927, 9, 28syl2an 596 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
3014, 25, 293eqtr3d 2783 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   × cxp 5687  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  1citg1 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669
This theorem is referenced by:  itg1lea  25762  itgitg1  25859  itg2addnclem  37658
  Copyright terms: Public domain W3C validator