![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1sub | Structured version Visualization version GIF version |
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1sub | β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf β πΊ)) = ((β«1βπΉ) β (β«1βπΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΉ β dom β«1) | |
2 | simpr 483 | . . . . 5 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΊ β dom β«1) | |
3 | neg1rr 12365 | . . . . . 6 β’ -1 β β | |
4 | 3 | a1i 11 | . . . . 5 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β -1 β β) |
5 | 2, 4 | i1fmulc 25653 | . . . 4 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β ((β Γ {-1}) βf Β· πΊ) β dom β«1) |
6 | 1, 5 | itg1add 25651 | . . 3 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) = ((β«1βπΉ) + (β«1β((β Γ {-1}) βf Β· πΊ)))) |
7 | 2, 4 | itg1mulc 25654 | . . . . 5 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β((β Γ {-1}) βf Β· πΊ)) = (-1 Β· (β«1βπΊ))) |
8 | itg1cl 25634 | . . . . . . . 8 β’ (πΊ β dom β«1 β (β«1βπΊ) β β) | |
9 | 8 | recnd 11280 | . . . . . . 7 β’ (πΊ β dom β«1 β (β«1βπΊ) β β) |
10 | 2, 9 | syl 17 | . . . . . 6 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1βπΊ) β β) |
11 | 10 | mulm1d 11704 | . . . . 5 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (-1 Β· (β«1βπΊ)) = -(β«1βπΊ)) |
12 | 7, 11 | eqtrd 2768 | . . . 4 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β((β Γ {-1}) βf Β· πΊ)) = -(β«1βπΊ)) |
13 | 12 | oveq2d 7442 | . . 3 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β ((β«1βπΉ) + (β«1β((β Γ {-1}) βf Β· πΊ))) = ((β«1βπΉ) + -(β«1βπΊ))) |
14 | 6, 13 | eqtrd 2768 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) = ((β«1βπΉ) + -(β«1βπΊ))) |
15 | reex 11237 | . . . 4 β’ β β V | |
16 | i1ff 25625 | . . . . 5 β’ (πΉ β dom β«1 β πΉ:ββΆβ) | |
17 | ax-resscn 11203 | . . . . 5 β’ β β β | |
18 | fss 6744 | . . . . 5 β’ ((πΉ:ββΆβ β§ β β β) β πΉ:ββΆβ) | |
19 | 16, 17, 18 | sylancl 584 | . . . 4 β’ (πΉ β dom β«1 β πΉ:ββΆβ) |
20 | i1ff 25625 | . . . . 5 β’ (πΊ β dom β«1 β πΊ:ββΆβ) | |
21 | fss 6744 | . . . . 5 β’ ((πΊ:ββΆβ β§ β β β) β πΊ:ββΆβ) | |
22 | 20, 17, 21 | sylancl 584 | . . . 4 β’ (πΊ β dom β«1 β πΊ:ββΆβ) |
23 | ofnegsub 12248 | . . . 4 β’ ((β β V β§ πΉ:ββΆβ β§ πΊ:ββΆβ) β (πΉ βf + ((β Γ {-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) | |
24 | 15, 19, 22, 23 | mp3an3an 1463 | . . 3 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (πΉ βf + ((β Γ {-1}) βf Β· πΊ)) = (πΉ βf β πΊ)) |
25 | 24 | fveq2d 6906 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf + ((β Γ {-1}) βf Β· πΊ))) = (β«1β(πΉ βf β πΊ))) |
26 | itg1cl 25634 | . . . 4 β’ (πΉ β dom β«1 β (β«1βπΉ) β β) | |
27 | 26 | recnd 11280 | . . 3 β’ (πΉ β dom β«1 β (β«1βπΉ) β β) |
28 | negsub 11546 | . . 3 β’ (((β«1βπΉ) β β β§ (β«1βπΊ) β β) β ((β«1βπΉ) + -(β«1βπΊ)) = ((β«1βπΉ) β (β«1βπΊ))) | |
29 | 27, 9, 28 | syl2an 594 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β ((β«1βπΉ) + -(β«1βπΊ)) = ((β«1βπΉ) β (β«1βπΊ))) |
30 | 14, 25, 29 | 3eqtr3d 2776 | 1 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (β«1β(πΉ βf β πΊ)) = ((β«1βπΉ) β (β«1βπΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3473 β wss 3949 {csn 4632 Γ cxp 5680 dom cdm 5682 βΆwf 6549 βcfv 6553 (class class class)co 7426 βf cof 7689 βcc 11144 βcr 11145 1c1 11147 + caddc 11149 Β· cmul 11151 β cmin 11482 -cneg 11483 β«1citg1 25564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-disj 5118 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-oi 9541 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-xadd 13133 df-ioo 13368 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13797 df-seq 14007 df-exp 14067 df-hash 14330 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-clim 15472 df-sum 15673 df-xmet 21279 df-met 21280 df-ovol 25413 df-vol 25414 df-mbf 25568 df-itg1 25569 |
This theorem is referenced by: itg1lea 25662 itgitg1 25758 itg2addnclem 37177 |
Copyright terms: Public domain | W3C validator |