Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg1sub | Structured version Visualization version GIF version |
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1sub | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
3 | neg1rr 12018 | . . . . . 6 ⊢ -1 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → -1 ∈ ℝ) |
5 | 2, 4 | i1fmulc 24773 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1) |
6 | 1, 5 | itg1add 24771 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺)))) |
7 | 2, 4 | itg1mulc 24774 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1‘𝐺))) |
8 | itg1cl 24754 | . . . . . . . 8 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
9 | 8 | recnd 10934 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℂ) |
10 | 2, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘𝐺) ∈ ℂ) |
11 | 10 | mulm1d 11357 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (-1 · (∫1‘𝐺)) = -(∫1‘𝐺)) |
12 | 7, 11 | eqtrd 2778 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1‘𝐺)) |
13 | 12 | oveq2d 7271 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
14 | 6, 13 | eqtrd 2778 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
15 | reex 10893 | . . . 4 ⊢ ℝ ∈ V | |
16 | i1ff 24745 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
17 | ax-resscn 10859 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
18 | fss 6601 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) | |
19 | 16, 17, 18 | sylancl 585 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℂ) |
20 | i1ff 24745 | . . . . 5 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
21 | fss 6601 | . . . . 5 ⊢ ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) | |
22 | 20, 17, 21 | sylancl 585 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℂ) |
23 | ofnegsub 11901 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
24 | 15, 19, 22, 23 | mp3an3an 1465 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
25 | 24 | fveq2d 6760 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹 ∘f − 𝐺))) |
26 | itg1cl 24754 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
27 | 26 | recnd 10934 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℂ) |
28 | negsub 11199 | . . 3 ⊢ (((∫1‘𝐹) ∈ ℂ ∧ (∫1‘𝐺) ∈ ℂ) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | |
29 | 27, 9, 28 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
30 | 14, 25, 29 | 3eqtr3d 2786 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 × cxp 5578 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 ∫1citg1 24684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 |
This theorem is referenced by: itg1lea 24782 itgitg1 24878 itg2addnclem 35755 |
Copyright terms: Public domain | W3C validator |