![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1sub | Structured version Visualization version GIF version |
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1sub | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘𝑓 − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
2 | simpr 485 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
3 | neg1rr 11606 | . . . . . 6 ⊢ -1 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → -1 ∈ ℝ) |
5 | 2, 4 | i1fmulc 23991 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘𝑓 · 𝐺) ∈ dom ∫1) |
6 | 1, 5 | itg1add 23989 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘𝑓 + ((ℝ × {-1}) ∘𝑓 · 𝐺))) = ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘𝑓 · 𝐺)))) |
7 | 2, 4 | itg1mulc 23992 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘𝑓 · 𝐺)) = (-1 · (∫1‘𝐺))) |
8 | itg1cl 23973 | . . . . . . . 8 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
9 | 8 | recnd 10522 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℂ) |
10 | 2, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘𝐺) ∈ ℂ) |
11 | 10 | mulm1d 10946 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (-1 · (∫1‘𝐺)) = -(∫1‘𝐺)) |
12 | 7, 11 | eqtrd 2833 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘𝑓 · 𝐺)) = -(∫1‘𝐺)) |
13 | 12 | oveq2d 7039 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘𝑓 · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
14 | 6, 13 | eqtrd 2833 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘𝑓 + ((ℝ × {-1}) ∘𝑓 · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
15 | reex 10481 | . . . 4 ⊢ ℝ ∈ V | |
16 | i1ff 23964 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
17 | ax-resscn 10447 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
18 | fss 6402 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) | |
19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℂ) |
20 | i1ff 23964 | . . . . 5 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
21 | fss 6402 | . . . . 5 ⊢ ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) | |
22 | 20, 17, 21 | sylancl 586 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℂ) |
23 | ofnegsub 11490 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹 ∘𝑓 + ((ℝ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | |
24 | 15, 19, 22, 23 | mp3an3an 1459 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘𝑓 + ((ℝ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
25 | 24 | fveq2d 6549 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘𝑓 + ((ℝ × {-1}) ∘𝑓 · 𝐺))) = (∫1‘(𝐹 ∘𝑓 − 𝐺))) |
26 | itg1cl 23973 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
27 | 26 | recnd 10522 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℂ) |
28 | negsub 10788 | . . 3 ⊢ (((∫1‘𝐹) ∈ ℂ ∧ (∫1‘𝐺) ∈ ℂ) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | |
29 | 27, 9, 28 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
30 | 14, 25, 29 | 3eqtr3d 2841 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘𝑓 − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 Vcvv 3440 ⊆ wss 3865 {csn 4478 × cxp 5448 dom cdm 5450 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 ∘𝑓 cof 7272 ℂcc 10388 ℝcr 10389 1c1 10391 + caddc 10393 · cmul 10395 − cmin 10723 -cneg 10724 ∫1citg1 23903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-disj 4937 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-sup 8759 df-inf 8760 df-oi 8827 df-dju 9183 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-q 12202 df-rp 12244 df-xadd 12362 df-ioo 12596 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-seq 13224 df-exp 13284 df-hash 13545 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-clim 14683 df-sum 14881 df-xmet 20224 df-met 20225 df-ovol 23752 df-vol 23753 df-mbf 23907 df-itg1 23908 |
This theorem is referenced by: itg1lea 24000 itgitg1 24096 itg2addnclem 34495 |
Copyright terms: Public domain | W3C validator |