MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1sub Structured version   Visualization version   GIF version

Theorem itg1sub 24561
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itg1sub ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))

Proof of Theorem itg1sub
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
2 simpr 488 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
3 neg1rr 11910 . . . . . 6 -1 ∈ ℝ
43a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → -1 ∈ ℝ)
52, 4i1fmulc 24555 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1)
61, 5itg1add 24553 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))))
72, 4itg1mulc 24556 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1𝐺)))
8 itg1cl 24536 . . . . . . . 8 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
98recnd 10826 . . . . . . 7 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℂ)
102, 9syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1𝐺) ∈ ℂ)
1110mulm1d 11249 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (-1 · (∫1𝐺)) = -(∫1𝐺))
127, 11eqtrd 2771 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1𝐺))
1312oveq2d 7207 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
146, 13eqtrd 2771 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1𝐹) + -(∫1𝐺)))
15 reex 10785 . . . 4 ℝ ∈ V
16 i1ff 24527 . . . . 5 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
17 ax-resscn 10751 . . . . 5 ℝ ⊆ ℂ
18 fss 6540 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
1916, 17, 18sylancl 589 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℂ)
20 i1ff 24527 . . . . 5 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
21 fss 6540 . . . . 5 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
2220, 17, 21sylancl 589 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℂ)
23 ofnegsub 11793 . . . 4 ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2415, 19, 22, 23mp3an3an 1469 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹f𝐺))
2524fveq2d 6699 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹f𝐺)))
26 itg1cl 24536 . . . 4 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
2726recnd 10826 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℂ)
28 negsub 11091 . . 3 (((∫1𝐹) ∈ ℂ ∧ (∫1𝐺) ∈ ℂ) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
2927, 9, 28syl2an 599 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((∫1𝐹) + -(∫1𝐺)) = ((∫1𝐹) − (∫1𝐺)))
3014, 25, 293eqtr3d 2779 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (∫1‘(𝐹f𝐺)) = ((∫1𝐹) − (∫1𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  wss 3853  {csn 4527   × cxp 5534  dom cdm 5536  wf 6354  cfv 6358  (class class class)co 7191  f cof 7445  cc 10692  cr 10693  1c1 10695   + caddc 10697   · cmul 10699  cmin 11027  -cneg 11028  1citg1 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xadd 12670  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-xmet 20310  df-met 20311  df-ovol 24315  df-vol 24316  df-mbf 24470  df-itg1 24471
This theorem is referenced by:  itg1lea  24564  itgitg1  24660  itg2addnclem  35514
  Copyright terms: Public domain W3C validator