| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1sub | Structured version Visualization version GIF version | ||
| Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg1sub | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
| 3 | neg1rr 12114 | . . . . . 6 ⊢ -1 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → -1 ∈ ℝ) |
| 5 | 2, 4 | i1fmulc 25602 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((ℝ × {-1}) ∘f · 𝐺) ∈ dom ∫1) |
| 6 | 1, 5 | itg1add 25600 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺)))) |
| 7 | 2, 4 | itg1mulc 25603 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = (-1 · (∫1‘𝐺))) |
| 8 | itg1cl 25584 | . . . . . . . 8 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℝ) | |
| 9 | 8 | recnd 11143 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → (∫1‘𝐺) ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘𝐺) ∈ ℂ) |
| 11 | 10 | mulm1d 11572 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (-1 · (∫1‘𝐺)) = -(∫1‘𝐺)) |
| 12 | 7, 11 | eqtrd 2764 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘((ℝ × {-1}) ∘f · 𝐺)) = -(∫1‘𝐺)) |
| 13 | 12 | oveq2d 7365 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + (∫1‘((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
| 14 | 6, 13 | eqtrd 2764 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = ((∫1‘𝐹) + -(∫1‘𝐺))) |
| 15 | reex 11100 | . . . 4 ⊢ ℝ ∈ V | |
| 16 | i1ff 25575 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 17 | ax-resscn 11066 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 18 | fss 6668 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℂ) |
| 20 | i1ff 25575 | . . . . 5 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
| 21 | fss 6668 | . . . . 5 ⊢ ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) | |
| 22 | 20, 17, 21 | sylancl 586 | . . . 4 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℂ) |
| 23 | ofnegsub 12126 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝐹:ℝ⟶ℂ ∧ 𝐺:ℝ⟶ℂ) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) | |
| 24 | 15, 19, 22, 23 | mp3an3an 1469 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺)) = (𝐹 ∘f − 𝐺)) |
| 25 | 24 | fveq2d 6826 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f + ((ℝ × {-1}) ∘f · 𝐺))) = (∫1‘(𝐹 ∘f − 𝐺))) |
| 26 | itg1cl 25584 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
| 27 | 26 | recnd 11143 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℂ) |
| 28 | negsub 11412 | . . 3 ⊢ (((∫1‘𝐹) ∈ ℂ ∧ (∫1‘𝐺) ∈ ℂ) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | |
| 29 | 27, 9, 28 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ((∫1‘𝐹) + -(∫1‘𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| 30 | 14, 25, 29 | 3eqtr3d 2772 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {csn 4577 × cxp 5617 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 ℂcc 11007 ℝcr 11008 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 -cneg 11348 ∫1citg1 25514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 |
| This theorem is referenced by: itg1lea 25611 itgitg1 25708 itg2addnclem 37661 |
| Copyright terms: Public domain | W3C validator |