MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcringcsetc Structured version   Visualization version   GIF version

Theorem funcringcsetc 20611
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.)
Hypotheses
Ref Expression
funcringcsetc.r 𝑅 = (RingCatβ€˜π‘ˆ)
funcringcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcringcsetc.b 𝐡 = (Baseβ€˜π‘…)
funcringcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcringcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcringcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetc (πœ‘ β†’ 𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   π‘₯,𝐡,𝑦   π‘₯,𝑅   π‘₯,𝑆   π‘₯,π‘ˆ,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑆(𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem funcringcsetc
Dummy variables π‘Ž 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . 6 (ExtStrCatβ€˜π‘ˆ) = (ExtStrCatβ€˜π‘ˆ)
2 funcringcsetc.s . . . . . 6 𝑆 = (SetCatβ€˜π‘ˆ)
3 eqid 2725 . . . . . 6 (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ))
4 eqid 2725 . . . . . 6 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
5 funcringcsetc.u . . . . . 6 (πœ‘ β†’ π‘ˆ ∈ WUni)
61, 5estrcbas 18114 . . . . . . 7 (πœ‘ β†’ π‘ˆ = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)))
76mpteq1d 5243 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) = (π‘₯ ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ (Baseβ€˜π‘₯)))
8 mpoeq12 7491 . . . . . . 7 ((π‘ˆ = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ∧ π‘ˆ = (Baseβ€˜(ExtStrCatβ€˜π‘ˆ))) β†’ (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) = (π‘₯ ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)), 𝑦 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
96, 6, 8syl2anc 582 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) = (π‘₯ ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)), 𝑦 ∈ (Baseβ€˜(ExtStrCatβ€˜π‘ˆ)) ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
101, 2, 3, 4, 5, 7, 9funcestrcsetc 18139 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯))((ExtStrCatβ€˜π‘ˆ) Func 𝑆)(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
11 df-br 5149 . . . . 5 ((π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯))((ExtStrCatβ€˜π‘ˆ) Func 𝑆)(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) ↔ ⟨(π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)), (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))⟩ ∈ ((ExtStrCatβ€˜π‘ˆ) Func 𝑆))
1210, 11sylib 217 . . . 4 (πœ‘ β†’ ⟨(π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)), (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))⟩ ∈ ((ExtStrCatβ€˜π‘ˆ) Func 𝑆))
13 funcringcsetc.r . . . . . . 7 𝑅 = (RingCatβ€˜π‘ˆ)
14 eqid 2725 . . . . . . 7 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
1513, 14, 5ringcbas 20587 . . . . . 6 (πœ‘ β†’ (Baseβ€˜π‘…) = (π‘ˆ ∩ Ring))
16 incom 4200 . . . . . 6 (π‘ˆ ∩ Ring) = (Ring ∩ π‘ˆ)
1715, 16eqtrdi 2781 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘…) = (Ring ∩ π‘ˆ))
18 eqid 2725 . . . . . 6 (Hom β€˜π‘…) = (Hom β€˜π‘…)
1913, 14, 5, 18ringchomfval 20588 . . . . 5 (πœ‘ β†’ (Hom β€˜π‘…) = ( RingHom β†Ύ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…))))
201, 5, 17, 19rhmsubcsetc 20599 . . . 4 (πœ‘ β†’ (Hom β€˜π‘…) ∈ (Subcatβ€˜(ExtStrCatβ€˜π‘ˆ)))
2112, 20funcres 17881 . . 3 (πœ‘ β†’ (⟨(π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)), (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))⟩ β†Ύf (Hom β€˜π‘…)) ∈ (((ExtStrCatβ€˜π‘ˆ) β†Ύcat (Hom β€˜π‘…)) Func 𝑆))
22 mptexg 7231 . . . . . 6 (π‘ˆ ∈ WUni β†’ (π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) ∈ V)
235, 22syl 17 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) ∈ V)
24 fvex 6907 . . . . . 6 (Hom β€˜π‘…) ∈ V
2524a1i 11 . . . . 5 (πœ‘ β†’ (Hom β€˜π‘…) ∈ V)
26 mpoexga 8080 . . . . . 6 ((π‘ˆ ∈ WUni ∧ π‘ˆ ∈ WUni) β†’ (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) ∈ V)
275, 5, 26syl2anc 582 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) ∈ V)
2815, 19rhmresfn 20585 . . . . 5 (πœ‘ β†’ (Hom β€˜π‘…) Fn ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)))
2923, 25, 27, 28resfval2 17878 . . . 4 (πœ‘ β†’ (⟨(π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)), (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))⟩ β†Ύf (Hom β€˜π‘…)) = ⟨((π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) β†Ύ (Baseβ€˜π‘…)), (π‘Ž ∈ (Baseβ€˜π‘…), 𝑏 ∈ (Baseβ€˜π‘…) ↦ ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)))⟩)
30 inss1 4228 . . . . . . . 8 (π‘ˆ ∩ Ring) βŠ† π‘ˆ
3115, 30eqsstrdi 4032 . . . . . . 7 (πœ‘ β†’ (Baseβ€˜π‘…) βŠ† π‘ˆ)
3231resmptd 6044 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) β†Ύ (Baseβ€˜π‘…)) = (π‘₯ ∈ (Baseβ€˜π‘…) ↦ (Baseβ€˜π‘₯)))
33 funcringcsetc.f . . . . . . 7 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
34 funcringcsetc.b . . . . . . . . 9 𝐡 = (Baseβ€˜π‘…)
3534a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
3635mpteq1d 5243 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)) = (π‘₯ ∈ (Baseβ€˜π‘…) ↦ (Baseβ€˜π‘₯)))
3733, 36eqtr2d 2766 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (Baseβ€˜π‘…) ↦ (Baseβ€˜π‘₯)) = 𝐹)
3832, 37eqtrd 2765 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) β†Ύ (Baseβ€˜π‘…)) = 𝐹)
39 funcringcsetc.g . . . . . 6 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
40 oveq1 7424 . . . . . . . . 9 (π‘₯ = π‘Ž β†’ (π‘₯ RingHom 𝑦) = (π‘Ž RingHom 𝑦))
4140reseq2d 5984 . . . . . . . 8 (π‘₯ = π‘Ž β†’ ( I β†Ύ (π‘₯ RingHom 𝑦)) = ( I β†Ύ (π‘Ž RingHom 𝑦)))
42 oveq2 7425 . . . . . . . . 9 (𝑦 = 𝑏 β†’ (π‘Ž RingHom 𝑦) = (π‘Ž RingHom 𝑏))
4342reseq2d 5984 . . . . . . . 8 (𝑦 = 𝑏 β†’ ( I β†Ύ (π‘Ž RingHom 𝑦)) = ( I β†Ύ (π‘Ž RingHom 𝑏)))
4441, 43cbvmpov 7513 . . . . . . 7 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))) = (π‘Ž ∈ 𝐡, 𝑏 ∈ 𝐡 ↦ ( I β†Ύ (π‘Ž RingHom 𝑏)))
4544a1i 11 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))) = (π‘Ž ∈ 𝐡, 𝑏 ∈ 𝐡 ↦ ( I β†Ύ (π‘Ž RingHom 𝑏))))
4634a1i 11 . . . . . . 7 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ 𝐡 = (Baseβ€˜π‘…))
47 eqidd 2726 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))) = (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
48 fveq2 6894 . . . . . . . . . . . . 13 (𝑦 = 𝑏 β†’ (Baseβ€˜π‘¦) = (Baseβ€˜π‘))
49 fveq2 6894 . . . . . . . . . . . . 13 (π‘₯ = π‘Ž β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘Ž))
5048, 49oveqan12rd 7437 . . . . . . . . . . . 12 ((π‘₯ = π‘Ž ∧ 𝑦 = 𝑏) β†’ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) = ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
5150reseq2d 5984 . . . . . . . . . . 11 ((π‘₯ = π‘Ž ∧ 𝑦 = 𝑏) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) = ( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))))
5251adantl 480 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ (π‘₯ = π‘Ž ∧ 𝑦 = 𝑏)) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) = ( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))))
5334, 31eqsstrid 4026 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐡 βŠ† π‘ˆ)
5453sseld 3976 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘Ž ∈ 𝐡 β†’ π‘Ž ∈ π‘ˆ))
5554com12 32 . . . . . . . . . . . 12 (π‘Ž ∈ 𝐡 β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
5655adantr 479 . . . . . . . . . . 11 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
5756impcom 406 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘Ž ∈ π‘ˆ)
5853sseld 3976 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑏 ∈ 𝐡 β†’ 𝑏 ∈ π‘ˆ))
5958adantld 489 . . . . . . . . . . 11 (πœ‘ β†’ ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ 𝑏 ∈ π‘ˆ))
6059imp 405 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ 𝑏 ∈ π‘ˆ)
61 ovexd 7452 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ∈ V)
6261resiexd 7226 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ ( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) ∈ V)
6347, 52, 57, 60, 62ovmpod 7571 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) = ( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))))
6463reseq1d 5983 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)) = (( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)))
655adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘ˆ ∈ WUni)
66 simprl 769 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘Ž ∈ 𝐡)
67 simprr 771 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ 𝑏 ∈ 𝐡)
6813, 34, 65, 18, 66, 67ringchom 20589 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž(Hom β€˜π‘…)𝑏) = (π‘Ž RingHom 𝑏))
6968reseq2d 5984 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)) = (( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†Ύ (π‘Ž RingHom 𝑏)))
70 eqid 2725 . . . . . . . . . . . 12 (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Ž)
71 eqid 2725 . . . . . . . . . . . 12 (Baseβ€˜π‘) = (Baseβ€˜π‘)
7270, 71rhmf 20428 . . . . . . . . . . 11 (𝑓 ∈ (π‘Ž RingHom 𝑏) β†’ 𝑓:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘))
73 fvex 6907 . . . . . . . . . . . . . 14 (Baseβ€˜π‘) ∈ V
74 fvex 6907 . . . . . . . . . . . . . 14 (Baseβ€˜π‘Ž) ∈ V
7573, 74pm3.2i 469 . . . . . . . . . . . . 13 ((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V)
7675a1i 11 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ ((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V))
77 elmapg 8856 . . . . . . . . . . . 12 (((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V) β†’ (𝑓 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ 𝑓:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
7876, 77syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (𝑓 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ 𝑓:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
7972, 78imbitrrid 245 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (𝑓 ∈ (π‘Ž RingHom 𝑏) β†’ 𝑓 ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))))
8079ssrdv 3983 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž RingHom 𝑏) βŠ† ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
8180resabs1d 6012 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (( I β†Ύ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†Ύ (π‘Ž RingHom 𝑏)) = ( I β†Ύ (π‘Ž RingHom 𝑏)))
8264, 69, 813eqtrrd 2770 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ ( I β†Ύ (π‘Ž RingHom 𝑏)) = ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)))
8335, 46, 82mpoeq123dva 7492 . . . . . 6 (πœ‘ β†’ (π‘Ž ∈ 𝐡, 𝑏 ∈ 𝐡 ↦ ( I β†Ύ (π‘Ž RingHom 𝑏))) = (π‘Ž ∈ (Baseβ€˜π‘…), 𝑏 ∈ (Baseβ€˜π‘…) ↦ ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏))))
8439, 45, 833eqtrrd 2770 . . . . 5 (πœ‘ β†’ (π‘Ž ∈ (Baseβ€˜π‘…), 𝑏 ∈ (Baseβ€˜π‘…) ↦ ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏))) = 𝐺)
8538, 84opeq12d 4882 . . . 4 (πœ‘ β†’ ⟨((π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)) β†Ύ (Baseβ€˜π‘…)), (π‘Ž ∈ (Baseβ€˜π‘…), 𝑏 ∈ (Baseβ€˜π‘…) ↦ ((π‘Ž(π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))𝑏) β†Ύ (π‘Ž(Hom β€˜π‘…)𝑏)))⟩ = ⟨𝐹, 𝐺⟩)
8629, 85eqtr2d 2766 . . 3 (πœ‘ β†’ ⟨𝐹, 𝐺⟩ = (⟨(π‘₯ ∈ π‘ˆ ↦ (Baseβ€˜π‘₯)), (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))))⟩ β†Ύf (Hom β€˜π‘…)))
8713, 5, 15, 19ringcval 20584 . . . 4 (πœ‘ β†’ 𝑅 = ((ExtStrCatβ€˜π‘ˆ) β†Ύcat (Hom β€˜π‘…)))
8887oveq1d 7432 . . 3 (πœ‘ β†’ (𝑅 Func 𝑆) = (((ExtStrCatβ€˜π‘ˆ) β†Ύcat (Hom β€˜π‘…)) Func 𝑆))
8921, 86, 883eltr4d 2840 . 2 (πœ‘ β†’ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
90 df-br 5149 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
9189, 90sylibr 233 1 (πœ‘ β†’ 𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463   ∩ cin 3944  βŸ¨cop 4635   class class class wbr 5148   ↦ cmpt 5231   I cid 5574   β†Ύ cres 5679  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419   ↑m cmap 8843  WUnicwun 10723  Basecbs 17179  Hom chom 17243   β†Ύcat cresc 17790   Func cfunc 17839   β†Ύf cresf 17842  SetCatcsetc 18063  ExtStrCatcestrc 18111  Ringcrg 20177   RingHom crh 20412  RingCatcringc 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-wun 10725  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-hom 17256  df-cco 17257  df-0g 17422  df-cat 17647  df-cid 17648  df-homf 17649  df-ssc 17792  df-resc 17793  df-subc 17794  df-func 17843  df-resf 17846  df-setc 18064  df-estrc 18112  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-grp 18897  df-ghm 19172  df-mgp 20079  df-ur 20126  df-ring 20179  df-rhm 20415  df-ringc 20583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator