MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcringcsetc Structured version   Visualization version   GIF version

Theorem funcringcsetc 20700
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.)
Hypotheses
Ref Expression
funcringcsetc.r 𝑅 = (RingCat‘𝑈)
funcringcsetc.s 𝑆 = (SetCat‘𝑈)
funcringcsetc.b 𝐵 = (Base‘𝑅)
funcringcsetc.u (𝜑𝑈 ∈ WUni)
funcringcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetc (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetc
Dummy variables 𝑎 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
2 funcringcsetc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
3 eqid 2737 . . . . . 6 (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈))
4 eqid 2737 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
5 funcringcsetc.u . . . . . 6 (𝜑𝑈 ∈ WUni)
61, 5estrcbas 18189 . . . . . . 7 (𝜑𝑈 = (Base‘(ExtStrCat‘𝑈)))
76mpteq1d 5246 . . . . . 6 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ (Base‘𝑥)))
8 mpoeq12 7513 . . . . . . 7 ((𝑈 = (Base‘(ExtStrCat‘𝑈)) ∧ 𝑈 = (Base‘(ExtStrCat‘𝑈))) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
96, 6, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ (Base‘(ExtStrCat‘𝑈)), 𝑦 ∈ (Base‘(ExtStrCat‘𝑈)) ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
101, 2, 3, 4, 5, 7, 9funcestrcsetc 18214 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
11 df-br 5152 . . . . 5 ((𝑥𝑈 ↦ (Base‘𝑥))((ExtStrCat‘𝑈) Func 𝑆)(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ↔ ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
1210, 11sylib 218 . . . 4 (𝜑 → ⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ∈ ((ExtStrCat‘𝑈) Func 𝑆))
13 funcringcsetc.r . . . . . . 7 𝑅 = (RingCat‘𝑈)
14 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1513, 14, 5ringcbas 20676 . . . . . 6 (𝜑 → (Base‘𝑅) = (𝑈 ∩ Ring))
16 incom 4220 . . . . . 6 (𝑈 ∩ Ring) = (Ring ∩ 𝑈)
1715, 16eqtrdi 2793 . . . . 5 (𝜑 → (Base‘𝑅) = (Ring ∩ 𝑈))
18 eqid 2737 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
1913, 14, 5, 18ringchomfval 20677 . . . . 5 (𝜑 → (Hom ‘𝑅) = ( RingHom ↾ ((Base‘𝑅) × (Base‘𝑅))))
201, 5, 17, 19rhmsubcsetc 20688 . . . 4 (𝜑 → (Hom ‘𝑅) ∈ (Subcat‘(ExtStrCat‘𝑈)))
2112, 20funcres 17956 . . 3 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) ∈ (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
22 mptexg 7248 . . . . . 6 (𝑈 ∈ WUni → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
235, 22syl 17 . . . . 5 (𝜑 → (𝑥𝑈 ↦ (Base‘𝑥)) ∈ V)
24 fvex 6927 . . . . . 6 (Hom ‘𝑅) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑅) ∈ V)
26 mpoexga 8110 . . . . . 6 ((𝑈 ∈ WUni ∧ 𝑈 ∈ WUni) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
275, 5, 26syl2anc 584 . . . . 5 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) ∈ V)
2815, 19rhmresfn 20674 . . . . 5 (𝜑 → (Hom ‘𝑅) Fn ((Base‘𝑅) × (Base‘𝑅)))
2923, 25, 27, 28resfval2 17953 . . . 4 (𝜑 → (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)) = ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩)
30 inss1 4248 . . . . . . . 8 (𝑈 ∩ Ring) ⊆ 𝑈
3115, 30eqsstrdi 4053 . . . . . . 7 (𝜑 → (Base‘𝑅) ⊆ 𝑈)
3231resmptd 6065 . . . . . 6 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
33 funcringcsetc.f . . . . . . 7 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
34 funcringcsetc.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3534a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
3635mpteq1d 5246 . . . . . . 7 (𝜑 → (𝑥𝐵 ↦ (Base‘𝑥)) = (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)))
3733, 36eqtr2d 2778 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑅) ↦ (Base‘𝑥)) = 𝐹)
3832, 37eqtrd 2777 . . . . 5 (𝜑 → ((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)) = 𝐹)
39 funcringcsetc.g . . . . . 6 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
40 oveq1 7445 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 RingHom 𝑦) = (𝑎 RingHom 𝑦))
4140reseq2d 6004 . . . . . . . 8 (𝑥 = 𝑎 → ( I ↾ (𝑥 RingHom 𝑦)) = ( I ↾ (𝑎 RingHom 𝑦)))
42 oveq2 7446 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑎 RingHom 𝑦) = (𝑎 RingHom 𝑏))
4342reseq2d 6004 . . . . . . . 8 (𝑦 = 𝑏 → ( I ↾ (𝑎 RingHom 𝑦)) = ( I ↾ (𝑎 RingHom 𝑏)))
4441, 43cbvmpov 7535 . . . . . . 7 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RingHom 𝑏)))
4544a1i 11 . . . . . 6 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RingHom 𝑏))))
4634a1i 11 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐵 = (Base‘𝑅))
47 eqidd 2738 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
48 fveq2 6914 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
49 fveq2 6914 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
5048, 49oveqan12rd 7458 . . . . . . . . . . . 12 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
5150reseq2d 6004 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5251adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
5334, 31eqsstrid 4047 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
5453sseld 3997 . . . . . . . . . . . . 13 (𝜑 → (𝑎𝐵𝑎𝑈))
5554com12 32 . . . . . . . . . . . 12 (𝑎𝐵 → (𝜑𝑎𝑈))
5655adantr 480 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
5756impcom 407 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
5853sseld 3997 . . . . . . . . . . . 12 (𝜑 → (𝑏𝐵𝑏𝑈))
5958adantld 490 . . . . . . . . . . 11 (𝜑 → ((𝑎𝐵𝑏𝐵) → 𝑏𝑈))
6059imp 406 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
61 ovexd 7473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
6261resiexd 7243 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ∈ V)
6347, 52, 57, 60, 62ovmpod 7592 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) = ( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))))
6463reseq1d 6003 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)))
655adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
66 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
67 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6813, 34, 65, 18, 66, 67ringchom 20678 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝑅)𝑏) = (𝑎 RingHom 𝑏))
6968reseq2d 6004 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎(Hom ‘𝑅)𝑏)) = (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RingHom 𝑏)))
70 eqid 2737 . . . . . . . . . . . 12 (Base‘𝑎) = (Base‘𝑎)
71 eqid 2737 . . . . . . . . . . . 12 (Base‘𝑏) = (Base‘𝑏)
7270, 71rhmf 20511 . . . . . . . . . . 11 (𝑓 ∈ (𝑎 RingHom 𝑏) → 𝑓:(Base‘𝑎)⟶(Base‘𝑏))
73 fvex 6927 . . . . . . . . . . . . . 14 (Base‘𝑏) ∈ V
74 fvex 6927 . . . . . . . . . . . . . 14 (Base‘𝑎) ∈ V
7573, 74pm3.2i 470 . . . . . . . . . . . . 13 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
7675a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V))
77 elmapg 8887 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7876, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ 𝑓:(Base‘𝑎)⟶(Base‘𝑏)))
7972, 78imbitrrid 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑓 ∈ (𝑎 RingHom 𝑏) → 𝑓 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
8079ssrdv 4004 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
8180resabs1d 6033 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ ((Base‘𝑏) ↑m (Base‘𝑎))) ↾ (𝑎 RingHom 𝑏)) = ( I ↾ (𝑎 RingHom 𝑏)))
8264, 69, 813eqtrrd 2782 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( I ↾ (𝑎 RingHom 𝑏)) = ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))
8335, 46, 82mpoeq123dva 7514 . . . . . 6 (𝜑 → (𝑎𝐵, 𝑏𝐵 ↦ ( I ↾ (𝑎 RingHom 𝑏))) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))))
8439, 45, 833eqtrrd 2782 . . . . 5 (𝜑 → (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏))) = 𝐺)
8538, 84opeq12d 4889 . . . 4 (𝜑 → ⟨((𝑥𝑈 ↦ (Base‘𝑥)) ↾ (Base‘𝑅)), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ (Base‘𝑅) ↦ ((𝑎(𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))𝑏) ↾ (𝑎(Hom ‘𝑅)𝑏)))⟩ = ⟨𝐹, 𝐺⟩)
8629, 85eqtr2d 2778 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ = (⟨(𝑥𝑈 ↦ (Base‘𝑥)), (𝑥𝑈, 𝑦𝑈 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))⟩ ↾f (Hom ‘𝑅)))
8713, 5, 15, 19ringcval 20673 . . . 4 (𝜑𝑅 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)))
8887oveq1d 7453 . . 3 (𝜑 → (𝑅 Func 𝑆) = (((ExtStrCat‘𝑈) ↾cat (Hom ‘𝑅)) Func 𝑆))
8921, 86, 883eltr4d 2856 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
90 df-br 5152 . 2 (𝐹(𝑅 Func 𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅 Func 𝑆))
9189, 90sylibr 234 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cin 3965  cop 4640   class class class wbr 5151  cmpt 5234   I cid 5586  cres 5695  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  m cmap 8874  WUnicwun 10747  Basecbs 17254  Hom chom 17318  cat cresc 17865   Func cfunc 17914  f cresf 17917  SetCatcsetc 18138  ExtStrCatcestrc 18186  Ringcrg 20260   RingHom crh 20495  RingCatcringc 20671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-wun 10749  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-hom 17331  df-cco 17332  df-0g 17497  df-cat 17722  df-cid 17723  df-homf 17724  df-ssc 17867  df-resc 17868  df-subc 17869  df-func 17918  df-resf 17921  df-setc 18139  df-estrc 18187  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498  df-ringc 20672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator