Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopnfi Structured version   Visualization version   GIF version

Theorem rrxtopnfi 46142
Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopnfi.1 (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrxtopnfi (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝜑,𝑓,𝑔,𝑘

Proof of Theorem rrxtopnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxtopnfi.1 . . 3 (𝜑𝐼 ∈ Fin)
21rrxtopn 46139 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
3 eqid 2734 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
4 eqid 2734 . . . . 5 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
51, 3, 4rrxbasefi 25456 . . . 4 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
65adantr 480 . . . 4 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
7 simpl 482 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑)
8 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
9 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
109, 6eleqtrd 2840 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
118, 10syldan 590 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑m 𝐼))
12 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
13 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
145adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
1513, 14eleqtrd 2840 . . . . . 6 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
1612, 15syldan 590 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑m 𝐼))
17 elmapi 8903 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
1918ffvelcdmda 7116 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
20 elmapi 8903 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℝ)
2221ffvelcdmda 7116 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
2319, 22resubcld 11714 . . . . . . . . . . 11 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
2423resqcld 14171 . . . . . . . . . 10 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℝ)
25 eqid 2734 . . . . . . . . . 10 (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))
2624, 25fmptd 7146 . . . . . . . . 9 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
27263adant1 1130 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
2813ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝐼 ∈ Fin)
29 0red 11289 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 0 ∈ ℝ)
3027, 28, 29fidmfisupp 9438 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0)
31 regsumsupp 21658 . . . . . . . 8 (((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
3227, 30, 28, 31syl3anc 1371 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
33 ax-resscn 11237 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3517, 34fssd 6763 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℂ)
36353ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℂ)
3736ffvelcdmda 7116 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
3833a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3920, 38fssd 6763 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℂ)
40393ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℂ)
4140ffvelcdmda 7116 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℂ)
4237, 41subcld 11643 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℂ)
4342sqcld 14190 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℂ)
4443, 25fmptd 7146 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℂ)
4528, 44fsumsupp0 45433 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
46 eqidd 2735 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
47 fveq2 6919 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
48 fveq2 6919 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
4947, 48oveq12d 7463 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑘) − (𝑔𝑘)))
5049oveq1d 7460 . . . . . . . . . 10 (𝑥 = 𝑘 → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5150adantl 481 . . . . . . . . 9 ((((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
52 simpr 484 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → 𝑘𝐼)
53 ovexd 7480 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ V)
5446, 51, 52, 53fvmptd 7034 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5554sumeq2dv 15746 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5632, 45, 553eqtrd 2778 . . . . . 6 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5756fveq2d 6923 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
587, 11, 16, 57syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
595, 6, 58mpoeq123dva 7520 . . 3 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
6059fveq2d 6923 . 2 (𝜑 → (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
612, 60eqtrd 2774 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  Vcvv 3482  wss 3970   class class class wbr 5169  cmpt 5252  wf 6568  cfv 6572  (class class class)co 7445  cmpo 7447   supp csupp 8197  m cmap 8880  Fincfn 8999   finSupp cfsupp 9427  cc 11178  cr 11179  0cc0 11180  cmin 11516  2c2 12344  cexp 14108  csqrt 15278  Σcsu 15730  Basecbs 17253  TopOpenctopn 17476   Σg cgsu 17495  MetOpencmopn 21372  fldcrefld 21640  ℝ^crrx 25429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-fz 13564  df-fzo 13708  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15731  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-prds 17502  df-pws 17504  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-grp 18971  df-minusg 18972  df-sbg 18973  df-subg 19158  df-ghm 19248  df-cntz 19352  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-top 22914  df-topon 22931  df-bases 22967  df-nm 24609  df-tng 24611  df-tcph 25215  df-rrx 25431
This theorem is referenced by:  qndenserrnopnlem  46152  ioorrnopnlem  46159
  Copyright terms: Public domain W3C validator