Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopnfi Structured version   Visualization version   GIF version

Theorem rrxtopnfi 46258
Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopnfi.1 (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrxtopnfi (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝜑,𝑓,𝑔,𝑘

Proof of Theorem rrxtopnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxtopnfi.1 . . 3 (𝜑𝐼 ∈ Fin)
21rrxtopn 46255 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
3 eqid 2730 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
4 eqid 2730 . . . . 5 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
51, 3, 4rrxbasefi 25317 . . . 4 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
65adantr 480 . . . 4 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
7 simpl 482 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑)
8 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
9 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
109, 6eleqtrd 2831 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
118, 10syldan 591 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑m 𝐼))
12 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
13 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
145adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
1513, 14eleqtrd 2831 . . . . . 6 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
1612, 15syldan 591 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑m 𝐼))
17 elmapi 8826 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
1918ffvelcdmda 7063 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
20 elmapi 8826 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℝ)
2221ffvelcdmda 7063 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
2319, 22resubcld 11622 . . . . . . . . . . 11 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
2423resqcld 14100 . . . . . . . . . 10 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℝ)
25 eqid 2730 . . . . . . . . . 10 (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))
2624, 25fmptd 7093 . . . . . . . . 9 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
27263adant1 1130 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
2813ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝐼 ∈ Fin)
29 0red 11195 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 0 ∈ ℝ)
3027, 28, 29fidmfisupp 9341 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0)
31 regsumsupp 21537 . . . . . . . 8 (((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
3227, 30, 28, 31syl3anc 1373 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
33 ax-resscn 11143 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3517, 34fssd 6712 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℂ)
36353ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℂ)
3736ffvelcdmda 7063 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
3833a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3920, 38fssd 6712 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℂ)
40393ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℂ)
4140ffvelcdmda 7063 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℂ)
4237, 41subcld 11551 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℂ)
4342sqcld 14119 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℂ)
4443, 25fmptd 7093 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℂ)
4528, 44fsumsupp0 45549 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
46 eqidd 2731 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
47 fveq2 6865 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
48 fveq2 6865 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
4947, 48oveq12d 7412 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑘) − (𝑔𝑘)))
5049oveq1d 7409 . . . . . . . . . 10 (𝑥 = 𝑘 → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5150adantl 481 . . . . . . . . 9 ((((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
52 simpr 484 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → 𝑘𝐼)
53 ovexd 7429 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ V)
5446, 51, 52, 53fvmptd 6982 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5554sumeq2dv 15675 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5632, 45, 553eqtrd 2769 . . . . . 6 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5756fveq2d 6869 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
587, 11, 16, 57syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
595, 6, 58mpoeq123dva 7470 . . 3 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
6059fveq2d 6869 . 2 (𝜑 → (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
612, 60eqtrd 2765 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3455  wss 3922   class class class wbr 5115  cmpt 5196  wf 6515  cfv 6519  (class class class)co 7394  cmpo 7396   supp csupp 8148  m cmap 8803  Fincfn 8922   finSupp cfsupp 9330  cc 11084  cr 11085  0cc0 11086  cmin 11423  2c2 12252  cexp 14036  csqrt 15209  Σcsu 15659  Basecbs 17185  TopOpenctopn 17390   Σg cgsu 17409  MetOpencmopn 21260  fldcrefld 21519  ℝ^crrx 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-sup 9411  df-inf 9412  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-fz 13482  df-fzo 13629  df-seq 13977  df-exp 14037  df-hash 14306  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-clim 15461  df-sum 15660  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-prds 17416  df-pws 17418  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-psmet 21262  df-xmet 21263  df-bl 21265  df-mopn 21266  df-cnfld 21271  df-refld 21520  df-dsmm 21647  df-frlm 21662  df-top 22787  df-topon 22804  df-bases 22839  df-nm 24476  df-tng 24478  df-tcph 25076  df-rrx 25292
This theorem is referenced by:  qndenserrnopnlem  46268  ioorrnopnlem  46275
  Copyright terms: Public domain W3C validator