Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopnfi Structured version   Visualization version   GIF version

Theorem rrxtopnfi 46409
Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopnfi.1 (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrxtopnfi (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝜑,𝑓,𝑔,𝑘

Proof of Theorem rrxtopnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxtopnfi.1 . . 3 (𝜑𝐼 ∈ Fin)
21rrxtopn 46406 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
3 eqid 2733 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
4 eqid 2733 . . . . 5 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
51, 3, 4rrxbasefi 25338 . . . 4 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
65adantr 480 . . . 4 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
7 simpl 482 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑)
8 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
9 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
109, 6eleqtrd 2835 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
118, 10syldan 591 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑m 𝐼))
12 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
13 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
145adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
1513, 14eleqtrd 2835 . . . . . 6 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
1612, 15syldan 591 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑m 𝐼))
17 elmapi 8779 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
1918ffvelcdmda 7023 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
20 elmapi 8779 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℝ)
2221ffvelcdmda 7023 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
2319, 22resubcld 11552 . . . . . . . . . . 11 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
2423resqcld 14034 . . . . . . . . . 10 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℝ)
25 eqid 2733 . . . . . . . . . 10 (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))
2624, 25fmptd 7053 . . . . . . . . 9 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
27263adant1 1130 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
2813ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝐼 ∈ Fin)
29 0red 11122 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 0 ∈ ℝ)
3027, 28, 29fidmfisupp 9263 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0)
31 regsumsupp 21561 . . . . . . . 8 (((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
3227, 30, 28, 31syl3anc 1373 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
33 ax-resscn 11070 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3517, 34fssd 6673 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℂ)
36353ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℂ)
3736ffvelcdmda 7023 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
3833a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3920, 38fssd 6673 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℂ)
40393ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℂ)
4140ffvelcdmda 7023 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℂ)
4237, 41subcld 11479 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℂ)
4342sqcld 14053 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℂ)
4443, 25fmptd 7053 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℂ)
4528, 44fsumsupp0 45702 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
46 eqidd 2734 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
47 fveq2 6828 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
48 fveq2 6828 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
4947, 48oveq12d 7370 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑘) − (𝑔𝑘)))
5049oveq1d 7367 . . . . . . . . . 10 (𝑥 = 𝑘 → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5150adantl 481 . . . . . . . . 9 ((((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
52 simpr 484 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → 𝑘𝐼)
53 ovexd 7387 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ V)
5446, 51, 52, 53fvmptd 6942 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5554sumeq2dv 15611 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5632, 45, 553eqtrd 2772 . . . . . 6 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5756fveq2d 6832 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
587, 11, 16, 57syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
595, 6, 58mpoeq123dva 7426 . . 3 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
6059fveq2d 6832 . 2 (𝜑 → (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
612, 60eqtrd 2768 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5093  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  cc 11011  cr 11012  0cc0 11013  cmin 11351  2c2 12187  cexp 13970  csqrt 15142  Σcsu 15595  Basecbs 17122  TopOpenctopn 17327   Σg cgsu 17346  MetOpencmopn 21283  fldcrefld 21543  ℝ^crrx 25311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-prds 17353  df-pws 17355  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-drng 20648  df-field 20649  df-staf 20756  df-srng 20757  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-psmet 21285  df-xmet 21286  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-refld 21544  df-dsmm 21671  df-frlm 21686  df-top 22810  df-topon 22827  df-bases 22862  df-nm 24498  df-tng 24500  df-tcph 25097  df-rrx 25313
This theorem is referenced by:  qndenserrnopnlem  46419  ioorrnopnlem  46426
  Copyright terms: Public domain W3C validator