| Step | Hyp | Ref
| Expression |
| 1 | | rrxtopnfi.1 |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 2 | 1 | rrxtopn 46232 |
. 2
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))))) |
| 3 | | eqid 2734 |
. . . . 5
⊢
(ℝ^‘𝐼) =
(ℝ^‘𝐼) |
| 4 | | eqid 2734 |
. . . . 5
⊢
(Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) |
| 5 | 1, 3, 4 | rrxbasefi 25379 |
. . . 4
⊢ (𝜑 →
(Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (Base‘(ℝ^‘𝐼))) →
(Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 7 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑) |
| 8 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼))) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼))) |
| 10 | 9, 6 | eleqtrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼)) |
| 11 | 8, 10 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑m 𝐼)) |
| 12 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼))) |
| 13 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼))) |
| 14 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼))) →
(Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 15 | 13, 14 | eleqtrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼)) |
| 16 | 12, 15 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑m 𝐼)) |
| 17 | | elmapi 8870 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (ℝ
↑m 𝐼)
→ 𝑓:𝐼⟶ℝ) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
→ 𝑓:𝐼⟶ℝ) |
| 19 | 18 | ffvelcdmda 7083 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ ℝ) |
| 20 | | elmapi 8870 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (ℝ
↑m 𝐼)
→ 𝑔:𝐼⟶ℝ) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
→ 𝑔:𝐼⟶ℝ) |
| 22 | 21 | ffvelcdmda 7083 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ ℝ) |
| 23 | 19, 22 | resubcld 11672 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) − (𝑔‘𝑥)) ∈ ℝ) |
| 24 | 23 | resqcld 14146 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) ∈ ℝ) |
| 25 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) |
| 26 | 24, 25 | fmptd 7113 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (ℝ
↑m 𝐼) ∧
𝑔 ∈ (ℝ
↑m 𝐼))
→ (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)):𝐼⟶ℝ) |
| 27 | 26 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)):𝐼⟶ℝ) |
| 28 | 1 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝐼 ∈ Fin) |
| 29 | | 0red 11245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 0 ∈
ℝ) |
| 30 | 27, 28, 29 | fidmfisupp 9393 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) finSupp 0) |
| 31 | | regsumsupp 21593 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘)) |
| 32 | 27, 30, 28, 31 | syl3anc 1372 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘)) |
| 33 | | ax-resscn 11193 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (ℝ
↑m 𝐼)
→ ℝ ⊆ ℂ) |
| 35 | 17, 34 | fssd 6732 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (ℝ
↑m 𝐼)
→ 𝑓:𝐼⟶ℂ) |
| 36 | 35 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℂ) |
| 37 | 36 | ffvelcdmda 7083 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ ℂ) |
| 38 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (ℝ
↑m 𝐼)
→ ℝ ⊆ ℂ) |
| 39 | 20, 38 | fssd 6732 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (ℝ
↑m 𝐼)
→ 𝑔:𝐼⟶ℂ) |
| 40 | 39 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℂ) |
| 41 | 40 | ffvelcdmda 7083 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ ℂ) |
| 42 | 37, 41 | subcld 11601 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) − (𝑔‘𝑥)) ∈ ℂ) |
| 43 | 42 | sqcld 14165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) ∈ ℂ) |
| 44 | 43, 25 | fmptd 7113 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)):𝐼⟶ℂ) |
| 45 | 28, 44 | fsumsupp0 45526 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘) = Σ𝑘 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘)) |
| 46 | | eqidd 2735 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) |
| 47 | | fveq2 6885 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑘 → (𝑓‘𝑥) = (𝑓‘𝑘)) |
| 48 | | fveq2 6885 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑘 → (𝑔‘𝑥) = (𝑔‘𝑘)) |
| 49 | 47, 48 | oveq12d 7430 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → ((𝑓‘𝑥) − (𝑔‘𝑥)) = ((𝑓‘𝑘) − (𝑔‘𝑘))) |
| 50 | 49 | oveq1d 7427 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) = (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
| 51 | 50 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) = (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
| 52 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 53 | | ovexd 7447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘 ∈ 𝐼) → (((𝑓‘𝑘) − (𝑔‘𝑘))↑2) ∈ V) |
| 54 | 46, 51, 52, 53 | fvmptd 7002 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘) = (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
| 55 | 54 | sumeq2dv 15719 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))‘𝑘) = Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
| 56 | 32, 45, 55 | 3eqtrd 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)) |
| 57 | 56 | fveq2d 6889 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) = (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
| 58 | 7, 11, 16, 57 | syl3anc 1372 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) = (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) |
| 59 | 5, 6, 58 | mpoeq123dva 7488 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦
(√‘Σ𝑘
∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| 60 | 59 | fveq2d 6889 |
. 2
⊢ (𝜑 → (MetOpen‘(𝑓 ∈
(Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ
↑m 𝐼),
𝑔 ∈ (ℝ
↑m 𝐼)
↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
| 61 | 2, 60 | eqtrd 2769 |
1
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦
(√‘Σ𝑘
∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |