Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopnfi Structured version   Visualization version   GIF version

Theorem rrxtopnfi 46210
Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopnfi.1 (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrxtopnfi (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑘   𝜑,𝑓,𝑔,𝑘

Proof of Theorem rrxtopnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxtopnfi.1 . . 3 (𝜑𝐼 ∈ Fin)
21rrxtopn 46207 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
3 eqid 2740 . . . . 5 (ℝ^‘𝐼) = (ℝ^‘𝐼)
4 eqid 2740 . . . . 5 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
51, 3, 4rrxbasefi 25465 . . . 4 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
65adantr 480 . . . 4 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
7 simpl 482 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝜑)
8 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
9 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (Base‘(ℝ^‘𝐼)))
109, 6eleqtrd 2846 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(ℝ^‘𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
118, 10syldan 590 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑓 ∈ (ℝ ↑m 𝐼))
12 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
13 simpr 484 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (Base‘(ℝ^‘𝐼)))
145adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
1513, 14eleqtrd 2846 . . . . . 6 ((𝜑𝑔 ∈ (Base‘(ℝ^‘𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
1612, 15syldan 590 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → 𝑔 ∈ (ℝ ↑m 𝐼))
17 elmapi 8909 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
1918ffvelcdmda 7120 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
20 elmapi 8909 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
2120adantl 481 . . . . . . . . . . . . 13 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℝ)
2221ffvelcdmda 7120 . . . . . . . . . . . 12 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
2319, 22resubcld 11720 . . . . . . . . . . 11 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
2423resqcld 14177 . . . . . . . . . 10 (((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℝ)
25 eqid 2740 . . . . . . . . . 10 (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))
2624, 25fmptd 7150 . . . . . . . . 9 ((𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
27263adant1 1130 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ)
2813ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝐼 ∈ Fin)
29 0red 11295 . . . . . . . . 9 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 0 ∈ ℝ)
3027, 28, 29fidmfisupp 9444 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0)
31 regsumsupp 21665 . . . . . . . 8 (((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ Fin) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
3227, 30, 28, 31syl3anc 1371 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
33 ax-resscn 11243 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3517, 34fssd 6766 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℂ)
36353ad2ant2 1134 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℂ)
3736ffvelcdmda 7120 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
3833a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ (ℝ ↑m 𝐼) → ℝ ⊆ ℂ)
3920, 38fssd 6766 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℂ)
40393ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → 𝑔:𝐼⟶ℂ)
4140ffvelcdmda 7120 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℂ)
4237, 41subcld 11649 . . . . . . . . . 10 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℂ)
4342sqcld 14196 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (((𝑓𝑥) − (𝑔𝑥))↑2) ∈ ℂ)
4443, 25fmptd 7150 . . . . . . . 8 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)):𝐼⟶ℂ)
4528, 44fsumsupp0 45501 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘))
46 eqidd 2741 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
47 fveq2 6922 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
48 fveq2 6922 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
4947, 48oveq12d 7468 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑘) − (𝑔𝑘)))
5049oveq1d 7465 . . . . . . . . . 10 (𝑥 = 𝑘 → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5150adantl 481 . . . . . . . . 9 ((((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝑓𝑘) − (𝑔𝑘))↑2))
52 simpr 484 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → 𝑘𝐼)
53 ovexd 7485 . . . . . . . . 9 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → (((𝑓𝑘) − (𝑔𝑘))↑2) ∈ V)
5446, 51, 52, 53fvmptd 7038 . . . . . . . 8 (((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = (((𝑓𝑘) − (𝑔𝑘))↑2))
5554sumeq2dv 15752 . . . . . . 7 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → Σ𝑘𝐼 ((𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))‘𝑘) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5632, 45, 553eqtrd 2784 . . . . . 6 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))
5756fveq2d 6926 . . . . 5 ((𝜑𝑓 ∈ (ℝ ↑m 𝐼) ∧ 𝑔 ∈ (ℝ ↑m 𝐼)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
587, 11, 16, 57syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑓 ∈ (Base‘(ℝ^‘𝐼)) ∧ 𝑔 ∈ (Base‘(ℝ^‘𝐼)))) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))
595, 6, 58mpoeq123dva 7526 . . 3 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
6059fveq2d 6926 . 2 (𝜑 → (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
612, 60eqtrd 2780 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  wf 6571  cfv 6575  (class class class)co 7450  cmpo 7452   supp csupp 8203  m cmap 8886  Fincfn 9005   finSupp cfsupp 9433  cc 11184  cr 11185  0cc0 11186  cmin 11522  2c2 12350  cexp 14114  csqrt 15284  Σcsu 15736  Basecbs 17260  TopOpenctopn 17483   Σg cgsu 17502  MetOpencmopn 21379  fldcrefld 21647  ℝ^crrx 25438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264  ax-addf 11265  ax-mulf 11266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-fz 13570  df-fzo 13714  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-clim 15536  df-sum 15737  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-hom 17337  df-cco 17338  df-rest 17484  df-topn 17485  df-0g 17503  df-gsum 17504  df-topgen 17505  df-prds 17509  df-pws 17511  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-mhm 18820  df-grp 18978  df-minusg 18979  df-sbg 18980  df-subg 19165  df-ghm 19255  df-cntz 19359  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-cring 20265  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-dvr 20429  df-rhm 20500  df-subrng 20574  df-subrg 20599  df-drng 20755  df-field 20756  df-staf 20864  df-srng 20865  df-lmod 20884  df-lss 20955  df-sra 21197  df-rgmod 21198  df-psmet 21381  df-xmet 21382  df-bl 21384  df-mopn 21385  df-cnfld 21390  df-refld 21648  df-dsmm 21777  df-frlm 21792  df-top 22923  df-topon 22940  df-bases 22976  df-nm 24618  df-tng 24620  df-tcph 25224  df-rrx 25440
This theorem is referenced by:  qndenserrnopnlem  46220  ioorrnopnlem  46227
  Copyright terms: Public domain W3C validator