| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ 𝐸 = 𝐸 | |
| 2 | 1 | rgenw 3048 | . . . 4 ⊢ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸 |
| 3 | 2 | jctr 524 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
| 4 | 3 | ralrimivw 3129 | . 2 ⊢ (𝐵 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
| 5 | mpoeq123 7441 | . 2 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | |
| 6 | 4, 5 | sylan2 593 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∀wral 3044 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: dffi3 9358 cantnfres 9606 xpsval 17509 monpropd 17679 grpsubpropd2 18960 lsmvalx 19553 lsmpropd 19591 funcrngcsetc 20560 funcringcsetc 20594 psrplusgpropd 22153 d1mat2pmat 22659 txval 23484 cnmptk1p 23605 cnmptk2 23606 xpstopnlem1 23729 rrxmval 25338 madjusmdetlem1 33810 pstmval 33878 qqhval2 33965 lmod1zr 48475 infsubc2d 49044 |
| Copyright terms: Public domain | W3C validator |