MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq12 Structured version   Visualization version   GIF version

Theorem mpoeq12 7506
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpoeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem mpoeq12
StepHypRef Expression
1 eqid 2737 . . . . 5 𝐸 = 𝐸
21rgenw 3065 . . . 4 𝑦𝐵 𝐸 = 𝐸
32jctr 524 . . 3 (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
43ralrimivw 3150 . 2 (𝐵 = 𝐷 → ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
5 mpoeq123 7505 . 2 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸)) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
64, 5sylan2 593 1 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wral 3061  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  dffi3  9471  cantnfres  9717  xpsval  17615  monpropd  17781  grpsubpropd2  19064  lsmvalx  19657  lsmpropd  19695  funcrngcsetc  20640  funcringcsetc  20674  psrplusgpropd  22237  d1mat2pmat  22745  txval  23572  cnmptk1p  23693  cnmptk2  23694  xpstopnlem1  23817  rrxmval  25439  madjusmdetlem1  33826  pstmval  33894  qqhval2  33983  lmod1zr  48410
  Copyright terms: Public domain W3C validator