![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . . 5 ⊢ 𝐸 = 𝐸 | |
2 | 1 | rgenw 3119 | . . . 4 ⊢ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸 |
3 | 2 | jctr 525 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
4 | 3 | ralrimivw 3152 | . 2 ⊢ (𝐵 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
5 | mpoeq123 7091 | . 2 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | |
6 | 4, 5 | sylan2 592 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∀wral 3107 ∈ cmpo 7025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-oprab 7027 df-mpo 7028 |
This theorem is referenced by: dffi3 8748 cantnfres 8993 xpsval 16676 homffval 16793 comfffval 16801 monpropd 16840 natfval 17049 plusffval 17690 grpsubfval 17908 grpsubfvalALT 17909 grpsubpropd2 17966 lsmvalx 18498 oppglsm 18501 lsmpropd 18534 dvrfval 19128 scaffval 19346 psrmulr 19856 psrplusgpropd 20091 ipffval 20478 marrepfval 20857 marepvfval 20862 d1mat2pmat 21035 txval 21860 cnmptk1p 21981 cnmptk2 21982 xpstopnlem1 22105 pcofval 23301 rrxmval 23695 madjusmdetlem1 30703 pstmval 30748 qqhval2 30836 mendplusgfval 39291 mendmulrfval 39293 mendvscafval 39296 funcrngcsetc 43769 funcringcsetc 43806 lmod1zr 44050 |
Copyright terms: Public domain | W3C validator |