![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpoeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 ⊢ 𝐸 = 𝐸 | |
2 | 1 | rgenw 3066 | . . . 4 ⊢ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸 |
3 | 2 | jctr 526 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
4 | 3 | ralrimivw 3151 | . 2 ⊢ (𝐵 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
5 | mpoeq123 7481 | . 2 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | |
6 | 4, 5 | sylan2 594 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∀wral 3062 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: dffi3 9426 cantnfres 9672 xpsval 17516 monpropd 17684 grpsubpropd2 18929 lsmvalx 19507 lsmpropd 19545 psrplusgpropd 21758 d1mat2pmat 22241 txval 23068 cnmptk1p 23189 cnmptk2 23190 xpstopnlem1 23313 rrxmval 24922 madjusmdetlem1 32807 pstmval 32875 qqhval2 32962 funcrngcsetc 46896 funcringcsetc 46933 lmod1zr 47174 |
Copyright terms: Public domain | W3C validator |