MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq12 Structured version   Visualization version   GIF version

Theorem mpoeq12 7422
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpoeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem mpoeq12
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐸 = 𝐸
21rgenw 3048 . . . 4 𝑦𝐵 𝐸 = 𝐸
32jctr 524 . . 3 (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
43ralrimivw 3125 . 2 (𝐵 = 𝐷 → ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸))
5 mpoeq123 7421 . 2 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 (𝐵 = 𝐷 ∧ ∀𝑦𝐵 𝐸 = 𝐸)) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
64, 5sylan2 593 1 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wral 3044  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  dffi3  9321  cantnfres  9573  xpsval  17474  monpropd  17644  grpsubpropd2  18925  lsmvalx  19518  lsmpropd  19556  funcrngcsetc  20525  funcringcsetc  20559  psrplusgpropd  22118  d1mat2pmat  22624  txval  23449  cnmptk1p  23570  cnmptk2  23571  xpstopnlem1  23694  rrxmval  25303  madjusmdetlem1  33794  pstmval  33862  qqhval2  33949  lmod1zr  48478  infsubc2d  49047
  Copyright terms: Public domain W3C validator