MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofpropd Structured version   Visualization version   GIF version

Theorem hofpropd 17267
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
hofpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
hofpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
hofpropd.c (𝜑𝐶 ∈ Cat)
hofpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
hofpropd (𝜑 → (HomF𝐶) = (HomF𝐷))

Proof of Theorem hofpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofpropd.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 16715 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32sqxpeqd 5378 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
43adantr 474 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
5 eqid 2825 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2825 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2825 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
81adantr 474 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (Homf𝐶) = (Homf𝐷))
9 xp1st 7465 . . . . . . 7 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
109ad2antll 720 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑦) ∈ (Base‘𝐶))
11 xp1st 7465 . . . . . . 7 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
1211ad2antrl 719 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑥) ∈ (Base‘𝐶))
135, 6, 7, 8, 10, 12homfeqval 16716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) = ((1st𝑦)(Hom ‘𝐷)(1st𝑥)))
14 xp2nd 7466 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
1514ad2antrl 719 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑥) ∈ (Base‘𝐶))
16 xp2nd 7466 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
1716ad2antll 720 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑦) ∈ (Base‘𝐶))
185, 6, 7, 8, 15, 17homfeqval 16716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
1918adantr 474 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
205, 6, 7, 8, 12, 15homfeqval 16716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)))
21 df-ov 6913 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
22 df-ov 6913 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩)
2320, 21, 223eqtr3g 2884 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
24 1st2nd2 7472 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524ad2antrl 719 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2625fveq2d 6441 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2725fveq2d 6441 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐷)‘𝑥) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
2823, 26, 273eqtr4d 2871 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
2928adantr 474 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
30 eqid 2825 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2825 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
328ad2antrr 717 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (Homf𝐶) = (Homf𝐷))
33 hofpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
3433ad3antrrr 721 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (compf𝐶) = (compf𝐷))
3510ad2antrr 717 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
3612ad2antrr 717 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
3717ad2antrr 717 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
38 simplrl 795 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
3925ad2antrr 717 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
4039oveq1d 6925 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
4140oveqd 6927 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
42 hofpropd.c . . . . . . . . . . 11 (𝜑𝐶 ∈ Cat)
4342ad3antrrr 721 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
4415ad2antrr 717 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
4526adantr 474 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
4645, 21syl6eqr 2879 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
4746eleq2d 2892 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
4847biimpa 470 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
49 simplrr 796 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
505, 6, 30, 43, 36, 44, 37, 48, 49catcocl 16705 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
5141, 50eqeltrd 2906 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
525, 6, 30, 31, 32, 34, 35, 36, 37, 38, 51comfeqval 16727 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
535, 6, 30, 31, 32, 34, 36, 44, 37, 48, 49comfeqval 16727 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5439oveq1d 6925 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐷)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦)))
5554oveqd 6927 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐷)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5653, 41, 553eqtr4d 2871 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(𝑥(comp‘𝐷)(2nd𝑦))))
5756oveq1d 6925 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5852, 57eqtrd 2861 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5929, 58mpteq12dva 4957 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) = ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))
6013, 19, 59mpt2eq123dva 6981 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))
613, 4, 60mpt2eq123dva 6981 . . 3 (𝜑 → (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))))
621, 61opeq12d 4633 . 2 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
63 eqid 2825 . . 3 (HomF𝐶) = (HomF𝐶)
6463, 42, 5, 6, 30hofval 17252 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
65 eqid 2825 . . 3 (HomF𝐷) = (HomF𝐷)
66 hofpropd.d . . 3 (𝜑𝐷 ∈ Cat)
67 eqid 2825 . . 3 (Base‘𝐷) = (Base‘𝐷)
6865, 66, 67, 7, 31hofval 17252 . 2 (𝜑 → (HomF𝐷) = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
6962, 64, 683eqtr4d 2871 1 (𝜑 → (HomF𝐶) = (HomF𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  cop 4405  cmpt 4954   × cxp 5344  cfv 6127  (class class class)co 6910  cmpt2 6912  1st c1st 7431  2nd c2nd 7432  Basecbs 16229  Hom chom 16323  compcco 16324  Catccat 16684  Homf chomf 16686  compfccomf 16687  HomFchof 17248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-cat 16688  df-homf 16690  df-comf 16691  df-hof 17250
This theorem is referenced by:  yonpropd  17268  oppcyon  17269
  Copyright terms: Public domain W3C validator