MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofpropd Structured version   Visualization version   GIF version

Theorem hofpropd 18312
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
hofpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
hofpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
hofpropd.c (𝜑𝐶 ∈ Cat)
hofpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
hofpropd (𝜑 → (HomF𝐶) = (HomF𝐷))

Proof of Theorem hofpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofpropd.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 17739 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32sqxpeqd 5717 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
5 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2737 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2737 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
81adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (Homf𝐶) = (Homf𝐷))
9 xp1st 8046 . . . . . . 7 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
109ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑦) ∈ (Base‘𝐶))
11 xp1st 8046 . . . . . . 7 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
1211ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑥) ∈ (Base‘𝐶))
135, 6, 7, 8, 10, 12homfeqval 17740 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) = ((1st𝑦)(Hom ‘𝐷)(1st𝑥)))
14 xp2nd 8047 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
1514ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑥) ∈ (Base‘𝐶))
16 xp2nd 8047 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
1716ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑦) ∈ (Base‘𝐶))
185, 6, 7, 8, 15, 17homfeqval 17740 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
1918adantr 480 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
205, 6, 7, 8, 12, 15homfeqval 17740 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)))
21 df-ov 7434 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
22 df-ov 7434 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩)
2320, 21, 223eqtr3g 2800 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
24 1st2nd2 8053 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2625fveq2d 6910 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2725fveq2d 6910 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐷)‘𝑥) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
2823, 26, 273eqtr4d 2787 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
2928adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
30 eqid 2737 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2737 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
328ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (Homf𝐶) = (Homf𝐷))
33 hofpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
3433ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (compf𝐶) = (compf𝐷))
3510ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
3612ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
3717ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
38 simplrl 777 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
3925ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
4039oveq1d 7446 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
4140oveqd 7448 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
42 hofpropd.c . . . . . . . . . . 11 (𝜑𝐶 ∈ Cat)
4342ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
4415ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
4526adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
4645, 21eqtr4di 2795 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
4746eleq2d 2827 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
4847biimpa 476 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
49 simplrr 778 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
505, 6, 30, 43, 36, 44, 37, 48, 49catcocl 17728 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
5141, 50eqeltrd 2841 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
525, 6, 30, 31, 32, 34, 35, 36, 37, 38, 51comfeqval 17751 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
535, 6, 30, 31, 32, 34, 36, 44, 37, 48, 49comfeqval 17751 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5439oveq1d 7446 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐷)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦)))
5554oveqd 7448 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐷)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5653, 41, 553eqtr4d 2787 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(𝑥(comp‘𝐷)(2nd𝑦))))
5756oveq1d 7446 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5852, 57eqtrd 2777 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5929, 58mpteq12dva 5231 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) = ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))
6013, 19, 59mpoeq123dva 7507 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))
613, 4, 60mpoeq123dva 7507 . . 3 (𝜑 → (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))))
621, 61opeq12d 4881 . 2 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
63 eqid 2737 . . 3 (HomF𝐶) = (HomF𝐶)
6463, 42, 5, 6, 30hofval 18297 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
65 eqid 2737 . . 3 (HomF𝐷) = (HomF𝐷)
66 hofpropd.d . . 3 (𝜑𝐷 ∈ Cat)
67 eqid 2737 . . 3 (Base‘𝐷) = (Base‘𝐷)
6865, 66, 67, 7, 31hofval 18297 . 2 (𝜑 → (HomF𝐷) = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
6962, 64, 683eqtr4d 2787 1 (𝜑 → (HomF𝐶) = (HomF𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Homf chomf 17709  compfccomf 17710  HomFchof 18293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-cat 17711  df-homf 17713  df-comf 17714  df-hof 18295
This theorem is referenced by:  yonpropd  18313  oppcyon  18314
  Copyright terms: Public domain W3C validator