MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofpropd Structured version   Visualization version   GIF version

Theorem hofpropd 18173
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
hofpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
hofpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
hofpropd.c (𝜑𝐶 ∈ Cat)
hofpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
hofpropd (𝜑 → (HomF𝐶) = (HomF𝐷))

Proof of Theorem hofpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofpropd.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 17602 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32sqxpeqd 5651 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
5 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2729 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
81adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (Homf𝐶) = (Homf𝐷))
9 xp1st 7956 . . . . . . 7 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
109ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑦) ∈ (Base‘𝐶))
11 xp1st 7956 . . . . . . 7 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
1211ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑥) ∈ (Base‘𝐶))
135, 6, 7, 8, 10, 12homfeqval 17603 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) = ((1st𝑦)(Hom ‘𝐷)(1st𝑥)))
14 xp2nd 7957 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
1514ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑥) ∈ (Base‘𝐶))
16 xp2nd 7957 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
1716ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑦) ∈ (Base‘𝐶))
185, 6, 7, 8, 15, 17homfeqval 17603 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
1918adantr 480 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
205, 6, 7, 8, 12, 15homfeqval 17603 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)))
21 df-ov 7352 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
22 df-ov 7352 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩)
2320, 21, 223eqtr3g 2787 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
24 1st2nd2 7963 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2625fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2725fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐷)‘𝑥) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
2823, 26, 273eqtr4d 2774 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
2928adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
30 eqid 2729 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2729 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
328ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (Homf𝐶) = (Homf𝐷))
33 hofpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
3433ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (compf𝐶) = (compf𝐷))
3510ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
3612ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
3717ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
38 simplrl 776 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
3925ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
4039oveq1d 7364 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
4140oveqd 7366 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
42 hofpropd.c . . . . . . . . . . 11 (𝜑𝐶 ∈ Cat)
4342ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
4415ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
4526adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
4645, 21eqtr4di 2782 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
4746eleq2d 2814 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
4847biimpa 476 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
49 simplrr 777 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
505, 6, 30, 43, 36, 44, 37, 48, 49catcocl 17591 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
5141, 50eqeltrd 2828 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
525, 6, 30, 31, 32, 34, 35, 36, 37, 38, 51comfeqval 17614 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
535, 6, 30, 31, 32, 34, 36, 44, 37, 48, 49comfeqval 17614 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5439oveq1d 7364 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐷)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦)))
5554oveqd 7366 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐷)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5653, 41, 553eqtr4d 2774 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(𝑥(comp‘𝐷)(2nd𝑦))))
5756oveq1d 7364 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5852, 57eqtrd 2764 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5929, 58mpteq12dva 5178 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) = ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))
6013, 19, 59mpoeq123dva 7423 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))
613, 4, 60mpoeq123dva 7423 . . 3 (𝜑 → (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))))
621, 61opeq12d 4832 . 2 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
63 eqid 2729 . . 3 (HomF𝐶) = (HomF𝐶)
6463, 42, 5, 6, 30hofval 18158 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
65 eqid 2729 . . 3 (HomF𝐷) = (HomF𝐷)
66 hofpropd.d . . 3 (𝜑𝐷 ∈ Cat)
67 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
6865, 66, 67, 7, 31hofval 18158 . 2 (𝜑 → (HomF𝐷) = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
6962, 64, 683eqtr4d 2774 1 (𝜑 → (HomF𝐶) = (HomF𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4583  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Homf chomf 17572  compfccomf 17573  HomFchof 18154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-cat 17574  df-homf 17576  df-comf 17577  df-hof 18156
This theorem is referenced by:  yonpropd  18174  oppcyon  18175
  Copyright terms: Public domain W3C validator