Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submat1n Structured version   Visualization version   GIF version

Theorem submat1n 33537
Description: One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
submat1n.a 𝐴 = ((1...𝑁) Mat 𝑅)
submat1n.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submat1n ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))

Proof of Theorem submat1n
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzdif2 32641 . . . . 5 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
2 nnuz 12898 . . . . 5 ℕ = (ℤ‘1)
31, 2eleq2s 2843 . . . 4 (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
43adantr 479 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
54adantr 479 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝑁})) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 eqid 2725 . . . . 5 (𝑁(subMat1‘𝑀)𝑁) = (𝑁(subMat1‘𝑀)𝑁)
7 elfz1end 13566 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
87biimpi 215 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
98adantr 479 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ (1...𝑁))
109, 7sylibr 233 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ ℕ)
1110adantr 479 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ ℕ)
1211, 8syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ (1...𝑁))
13 submat1n.a . . . . . . 7 𝐴 = ((1...𝑁) Mat 𝑅)
14 eqid 2725 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 submat1n.b . . . . . . 7 𝐵 = (Base‘𝐴)
1613, 14, 15matbas2i 22368 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716ad2antlr 725 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 simprl 769 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ ((1...𝑁) ∖ {𝑁}))
19 nnz 12612 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 fzoval 13668 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
2221, 3eqtr4d 2768 . . . . . . 7 (𝑁 ∈ ℕ → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2311, 22syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2418, 23eleqtrrd 2828 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ (1..^𝑁))
25 simprr 771 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))
2625, 23eleqtrrd 2828 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ (1..^𝑁))
276, 11, 11, 12, 12, 17, 24, 26smattl 33530 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗) = (𝑖𝑀𝑗))
2827eqcomd 2731 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖𝑀𝑗) = (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗))
294, 5, 28mpoeq123dva 7494 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
30 simpr 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑀𝐵)
31 eqid 2725 . . . 4 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
3213, 31, 15submaval 22527 . . 3 ((𝑀𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
3330, 9, 9, 32syl3anc 1368 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
34 eqid 2725 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
3513, 15, 34, 6, 10, 9, 9, 30smatcl 33534 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
36 eqid 2725 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
3736, 34matmpo 33535 . . 3 ((𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3835, 37syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3929, 33, 383eqtr4rd 2776 1 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3941  {csn 4630   × cxp 5676  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845  1c1 11141  cmin 11476  cn 12245  cz 12591  cuz 12855  ...cfz 13519  ..^cfzo 13662  Basecbs 17183   Mat cmat 22351   subMat csubma 22522  subMat1csmat 33525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-pws 17434  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-mat 22352  df-subma 22523  df-smat 33526
This theorem is referenced by:  submatres  33538  madjusmdetlem1  33559
  Copyright terms: Public domain W3C validator