Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submat1n Structured version   Visualization version   GIF version

Theorem submat1n 32386
Description: One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
submat1n.a 𝐴 = ((1...𝑁) Mat 𝑅)
submat1n.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submat1n ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))

Proof of Theorem submat1n
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzdif2 31694 . . . . 5 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
2 nnuz 12806 . . . . 5 ℕ = (ℤ‘1)
31, 2eleq2s 2856 . . . 4 (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
43adantr 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
54adantr 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝑁})) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 eqid 2736 . . . . 5 (𝑁(subMat1‘𝑀)𝑁) = (𝑁(subMat1‘𝑀)𝑁)
7 elfz1end 13471 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
87biimpi 215 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
98adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ (1...𝑁))
109, 7sylibr 233 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ ℕ)
1110adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ ℕ)
1211, 8syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ (1...𝑁))
13 submat1n.a . . . . . . 7 𝐴 = ((1...𝑁) Mat 𝑅)
14 eqid 2736 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 submat1n.b . . . . . . 7 𝐵 = (Base‘𝐴)
1613, 14, 15matbas2i 21771 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716ad2antlr 725 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 simprl 769 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ ((1...𝑁) ∖ {𝑁}))
19 nnz 12520 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 fzoval 13573 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
2221, 3eqtr4d 2779 . . . . . . 7 (𝑁 ∈ ℕ → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2311, 22syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2418, 23eleqtrrd 2841 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ (1..^𝑁))
25 simprr 771 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))
2625, 23eleqtrrd 2841 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ (1..^𝑁))
276, 11, 11, 12, 12, 17, 24, 26smattl 32379 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗) = (𝑖𝑀𝑗))
2827eqcomd 2742 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖𝑀𝑗) = (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗))
294, 5, 28mpoeq123dva 7431 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
30 simpr 485 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑀𝐵)
31 eqid 2736 . . . 4 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
3213, 31, 15submaval 21930 . . 3 ((𝑀𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
3330, 9, 9, 32syl3anc 1371 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
34 eqid 2736 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
3513, 15, 34, 6, 10, 9, 9, 30smatcl 32383 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
36 eqid 2736 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
3736, 34matmpo 32384 . . 3 ((𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3835, 37syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3929, 33, 383eqtr4rd 2787 1 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cdif 3907  {csn 4586   × cxp 5631  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  1c1 11052  cmin 11385  cn 12153  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567  Basecbs 17083   Mat cmat 21754   subMat csubma 21925  subMat1csmat 32374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mat 21755  df-subma 21926  df-smat 32375
This theorem is referenced by:  submatres  32387  madjusmdetlem1  32408
  Copyright terms: Public domain W3C validator