Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submat1n Structured version   Visualization version   GIF version

Theorem submat1n 31657
Description: One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
submat1n.a 𝐴 = ((1...𝑁) Mat 𝑅)
submat1n.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submat1n ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))

Proof of Theorem submat1n
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzdif2 31014 . . . . 5 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
2 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
31, 2eleq2s 2857 . . . 4 (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
43adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
54adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝑁})) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 eqid 2738 . . . . 5 (𝑁(subMat1‘𝑀)𝑁) = (𝑁(subMat1‘𝑀)𝑁)
7 elfz1end 13215 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
87biimpi 215 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
98adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ (1...𝑁))
109, 7sylibr 233 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ ℕ)
1110adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ ℕ)
1211, 8syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ (1...𝑁))
13 submat1n.a . . . . . . 7 𝐴 = ((1...𝑁) Mat 𝑅)
14 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 submat1n.b . . . . . . 7 𝐵 = (Base‘𝐴)
1613, 14, 15matbas2i 21479 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716ad2antlr 723 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 simprl 767 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ ((1...𝑁) ∖ {𝑁}))
19 nnz 12272 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 fzoval 13317 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
2221, 3eqtr4d 2781 . . . . . . 7 (𝑁 ∈ ℕ → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2311, 22syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2418, 23eleqtrrd 2842 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ (1..^𝑁))
25 simprr 769 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))
2625, 23eleqtrrd 2842 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ (1..^𝑁))
276, 11, 11, 12, 12, 17, 24, 26smattl 31650 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗) = (𝑖𝑀𝑗))
2827eqcomd 2744 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖𝑀𝑗) = (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗))
294, 5, 28mpoeq123dva 7327 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
30 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑀𝐵)
31 eqid 2738 . . . 4 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
3213, 31, 15submaval 21638 . . 3 ((𝑀𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
3330, 9, 9, 32syl3anc 1369 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
34 eqid 2738 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
3513, 15, 34, 6, 10, 9, 9, 30smatcl 31654 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
36 eqid 2738 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
3736, 34matmpo 31655 . . 3 ((𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3835, 37syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3929, 33, 383eqtr4rd 2789 1 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  1c1 10803  cmin 11135  cn 11903  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  Basecbs 16840   Mat cmat 21464   subMat csubma 21633  subMat1csmat 31645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mat 21465  df-subma 21634  df-smat 31646
This theorem is referenced by:  submatres  31658  madjusmdetlem1  31679
  Copyright terms: Public domain W3C validator