Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submat1n Structured version   Visualization version   GIF version

Theorem submat1n 33841
Description: One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
submat1n.a 𝐴 = ((1...𝑁) Mat 𝑅)
submat1n.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submat1n ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))

Proof of Theorem submat1n
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzdif2 32779 . . . . 5 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
2 nnuz 12779 . . . . 5 ℕ = (ℤ‘1)
31, 2eleq2s 2851 . . . 4 (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
43adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
54adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝑁})) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 eqid 2733 . . . . 5 (𝑁(subMat1‘𝑀)𝑁) = (𝑁(subMat1‘𝑀)𝑁)
7 elfz1end 13458 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
87biimpi 216 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
98adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ (1...𝑁))
109, 7sylibr 234 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ ℕ)
1110adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ ℕ)
1211, 8syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑁 ∈ (1...𝑁))
13 submat1n.a . . . . . . 7 𝐴 = ((1...𝑁) Mat 𝑅)
14 eqid 2733 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 submat1n.b . . . . . . 7 𝐵 = (Base‘𝐴)
1613, 14, 15matbas2i 22340 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
1716ad2antlr 727 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑀 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
18 simprl 770 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ ((1...𝑁) ∖ {𝑁}))
19 nnz 12498 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 fzoval 13564 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
2221, 3eqtr4d 2771 . . . . . . 7 (𝑁 ∈ ℕ → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2311, 22syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (1..^𝑁) = ((1...𝑁) ∖ {𝑁}))
2418, 23eleqtrrd 2836 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑖 ∈ (1..^𝑁))
25 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))
2625, 23eleqtrrd 2836 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → 𝑗 ∈ (1..^𝑁))
276, 11, 11, 12, 12, 17, 24, 26smattl 33834 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗) = (𝑖𝑀𝑗))
2827eqcomd 2739 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀𝐵) ∧ (𝑖 ∈ ((1...𝑁) ∖ {𝑁}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝑁}))) → (𝑖𝑀𝑗) = (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗))
294, 5, 28mpoeq123dva 7428 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
30 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑀𝐵)
31 eqid 2733 . . . 4 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
3213, 31, 15submaval 22499 . . 3 ((𝑀𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
3330, 9, 9, 32syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
34 eqid 2733 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
3513, 15, 34, 6, 10, 9, 9, 30smatcl 33838 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
36 eqid 2733 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
3736, 34matmpo 33839 . . 3 ((𝑁(subMat1‘𝑀)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3835, 37syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖(𝑁(subMat1‘𝑀)𝑁)𝑗)))
3929, 33, 383eqtr4rd 2779 1 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cdif 3895  {csn 4577   × cxp 5619  cfv 6488  (class class class)co 7354  cmpo 7356  m cmap 8758  1c1 11016  cmin 11353  cn 12134  cz 12477  cuz 12740  ...cfz 13411  ..^cfzo 13558  Basecbs 17124   Mat cmat 22325   subMat csubma 22494  subMat1csmat 33829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-prds 17355  df-pws 17357  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-mat 22326  df-subma 22495  df-smat 33830
This theorem is referenced by:  submatres  33842  madjusmdetlem1  33863
  Copyright terms: Public domain W3C validator